Last edited by hbghlyj 2023-5-6 14:16UTM groups and symmetry, Armstrong
27.7. Show that $F_2 \times F_2$ is not a free group. Write down a presentation for $F_2 \times F_2$. 使用直積的展示「若$G=〈S∣R〉,H=〈T∣Q〉$,且$S ∩ T = \{e\}$,則$G × H=〈S,T∣R,Q, [S,T]〉$」解决如下
首先将两个 $F_2$ 嵌入到一个群 $F_4=〈a, b, c, d〉$ 中$〈a, b〉∩〈c, d〉= \{e\}.$
则$F_2 × F_2 = 〈a, b, c, d \mid [a,c],[a,d],[b,c],[b,d]〉,$右边是4个交换子 |