Forgot password
 Register account
View 147|Reply 2

证明$ℂℙ^1×ℂℙ^1→ℂℙ^2$满射

[Copy link]

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2023-4-26 04:13 |Read mode
设$$
f:\left(\left[z_0, z_1\right],\left[w_0, w_1\right]\right) \mapsto\left[z_0 w_0,-z_0 w_1-z_1 w_0, z_1 w_1\right]
$$证明$f$是$ℂℙ^1×ℂℙ^1→ℂℙ^2$的满射;
$f$不是$ℝℙ^1×ℝℙ^1→ℝℙ^2$的满射, 求$\operatorname{Im}f$.

相关: 证明ℝP^2→ℝ^4单射

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2023-4-26 04:32
对于$[1,x_1,x_2]∈ℂℙ^2$,
\begin{cases}
1=z_0 w_0\\
x_1=-z_0 w_1-z_1 w_0\\
x_2=z_1 w_1
\end{cases}
有一组解
\begin{cases}
z_0=1\\z_1={-x_1-\sqrt{x_1^2-4x_2}\over2}\\w_0=1\\w_1={-x_1+\sqrt{x_1^2-4x_2}\over2}
\end{cases}对于$[0,x_1,x_2]∈ℂℙ^2$,
\begin{cases}
0=z_0 w_0\\
x_1=-z_0 w_1-z_1 w_0\\
x_2=z_1 w_1
\end{cases}
有一组解
\begin{cases}
z_0=0\\z_1=1\\w_0=-x_1\\w_1=x_2
\end{cases}
对于$f:ℝℙ^1×ℝℙ^1→ℝℙ^2$好像应该是$$\operatorname{Im}f=\{[1,x_1,x_2]:x_1^2-4x_2\ge0,x_1,x_2\inℝ\}\cup\{[0,x_1,x_2]:x_1,x_2\inℝ\}$$
因为$f$连续, 且$ℝℙ^1×ℝℙ^1$是紧的、连通的, 所以推出$\operatorname{Im}f$是紧的、连通的

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2023-4-26 04:38
是否存在$ℝℙ^1×ℝℙ^1→ℝℙ^2$的连续满射

48

Threads

771

Posts

93

Reputation

Show all posts

Czhang271828 posted 2023-4-26 14:02
hbghlyj 发表于 2023-4-26 04:38
是否存在$ℝℙ^1×ℝℙ^1→ℝℙ^2$的连续满射
无. 显然 $\pi_2(\mathbb CP^1\times \mathbb CP^1)=0$, 考虑球面到射影空间的 $2$-覆叠映射可知 $\pi_2(\mathbb CP^2)\simeq \pi_2(S^2)\simeq \mathbb Z$. 因此不存在相应的连续满射. 反过来也不可能有连续满射, 观察 $\pi_1$ 即可.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:00 GMT+8

Powered by Discuz!

Processed in 0.015100 seconds, 30 queries