Forgot password?
 Register account
View 241|Reply 5

[几何] 三角形ABC中,BD长度最大值

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2023-2-25 18:30 |Read mode
三角形ABC中,$BC=\sqrt{3}AC,\angle BAC=\frac{\pi}{3}$,点D,点B在直线AC两侧,且AD=1,DC=$\sqrt{3}$,则BD长度最大值为?

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

 Author| realnumber Posted 2023-2-25 21:58
Last edited by realnumber 2023-2-28 15:35暴算是可以的
D(x,y),A(0,t),C(0,0),B($\sqrt{3}t$,0)
有$x^2+y^2=1,x^2+(y-t)^2=1,M=(x-\sqrt{3}t)^2+y^2$
解得$x=\frac{3t^2+3-M}{2\sqrt{3}t},y=\frac{t^2+2}{2t}$代入$x^2+y^2=1$
得到关于t^2的二次方程,令判别式大于等于0,可得M最大为27,即BD最大为$3\sqrt{3}$.


770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2023-2-25 23:11
realnumber 发表于 2023-2-25 21:58
暴算是可以的
D(x,y),A(0,t),C(0,0),B($\sqrt{3}t$,0)
有$x^2+y^2=1,x^2+(y-t)^2=1,M=(x-\sqrt{3}t)^2+y^2$ ...
在四边形 ABCD 中用 Ptolemy 不等式,一步到位
isee=freeMaths@知乎

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2023-2-25 23:25

Comment

平几是楼主的短板  Posted 2023-2-25 23:29
en ,是的,谢谢,明白了  Posted 2023-2-26 00:39

Mobile version|Discuz Math Forum

2025-5-31 11:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit