Forgot password
 Register account
View 167|Reply 5

[几何] 三角形ABC中,BD长度最大值

[Copy link]

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2023-2-25 18:30 |Read mode
三角形ABC中,$BC=\sqrt{3}AC,\angle BAC=\frac{\pi}{3}$,点D,点B在直线AC两侧,且AD=1,DC=$\sqrt{3}$,则BD长度最大值为?

412

Threads

1432

Posts

3

Reputation

Show all posts

original poster realnumber posted 2023-2-25 21:58
Last edited by realnumber 2023-2-28 15:35暴算是可以的
D(x,y),A(0,t),C(0,0),B($\sqrt{3}t$,0)
有$x^2+y^2=1,x^2+(y-t)^2=1,M=(x-\sqrt{3}t)^2+y^2$
解得$x=\frac{3t^2+3-M}{2\sqrt{3}t},y=\frac{t^2+2}{2t}$代入$x^2+y^2=1$
得到关于t^2的二次方程,令判别式大于等于0,可得M最大为27,即BD最大为$3\sqrt{3}$.


764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2023-2-25 23:11
realnumber 发表于 2023-2-25 21:58
暴算是可以的
D(x,y),A(0,t),C(0,0),B($\sqrt{3}t$,0)
有$x^2+y^2=1,x^2+(y-t)^2=1,M=(x-\sqrt{3}t)^2+y^2$ ...
在四边形 ABCD 中用 Ptolemy 不等式,一步到位
isee=freeMaths@知乎

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2023-2-25 23:25

Comment

平几是楼主的短板  posted 2023-2-25 23:29
en ,是的,谢谢,明白了  posted 2023-2-26 00:39

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:18 GMT+8

Powered by Discuz!

Processed in 0.011431 seconds, 24 queries