Forgot password?
 Create new account
View 157|Reply 1

[数论] $p$-单位根的子集 $S$ 的和是实数,那么 $S$ 的总和是 $p$ 的倍数

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2023-4-15 07:14:30 |Read mode
Last edited by hbghlyj at 2024-10-20 18:13:00$p$为奇素数, $S\subset \mathbb Z$,使得$\displaystyle\sum_{s\in S}e^{2\pi i s/p}\in\mathbb R,$则$\displaystyle\sum_{s\in S}s\equiv 0\bmod p$.

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2024-10-21 02:13:26
证明. 设 $\zeta=e^{2\pi i/p}$. 因为将$S$中的数$\text{mod }p$后结论不变,假设$S$中的数$∈[0,p)$.
若$\displaystyle\sum_{s\in S}\zeta^s\inR,$则它等于自身的共轭,即
$$\sum_{s\in S}\zeta^s=\sum_{s\in S}\zeta^{-s},$$
因为$p$为素数,$\zeta$的极小多项式为$\frac{\zeta^p-1}{\zeta-1}$,我们得出
$$\frac{x^p-1}{x-1}\bigg|\sum_{s\in S}\left(x^{p+s}-x^{p-s}\right),$$
因为$x-1$与左侧的多项式互质,所以可除掉右边的$x-1$,得到
$$\frac{x^p-1}{x-1}\bigg|\sum_{s\in S}\left(x^{p+s-1}+\cdots+x^{p-s}\right).$$
因此左侧多项式在$x=1$的值整除右侧多项式在$x=1$的值.即$p|\sum_{s\in S}2s$.

手机版Mobile version|Leisure Math Forum

2025-4-21 19:11 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list