找回密码
 快速注册
搜索
查看: 52|回复: 3

[数论] roots of unity filter

[复制链接]

3147

主题

8384

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65372
QQ

显示全部楼层

hbghlyj 发表于 2023-2-1 07:24 |阅读模式
本帖最后由 hbghlyj 于 2023-2-2 23:35 编辑 参见Roots of Unity (Ray Li)Finite Fourier analysis
计算 $\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$
$$\frac{e^x+e^{-x}}2=\sum_{n=0}^\infty\frac{1^n+(-1)^n}2\cdot\frac{x^n}{n!}=\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$
计算 $\sum_{n=0}^{\infty} \frac{x^{3n}}{(3n)!}$
$$\frac{e^x+e^{ωx}+e^{ω^2x}}3=\sum_{n=0}^\infty\frac{1^n+ω^n+(ω^2)^n}3\cdot\frac{x^n}{n!}=\sum_{n=0}^\infty\frac{x^{3n}}{(3n)!}$$
其中 $ω=\cos (2\pi/3)+i\sin (2\pi/3)$. MSE

计算 $\sum_{n=0}^\infty \frac {x^{5n}} {(5n)!}$ MSE
Clearly
$$
\frac{1}{5}\sum_{j=1}^5\mathrm{e}^{\omega^j x}=\sum_{n=0}^\infty\frac{x^{5n}}{(5n)!}
$$
where $\omega=\mathrm{e}^{2\pi i/5}$, since
$$
\sum_{j=1}^5 \omega^{jn}=\left\{\begin{array}{ccc} 5&\text{if}& 5\mid n, \\ 0&\text{if} &5\not\mid n. \end{array}\right.
$$
But
$$
\omega=\cos (2\pi/5)+i\sin (2\pi/5), \,\,\omega^2=\cos (4\pi/5)+i\sin (4\pi/5),
\,\,\omega^3=\overline{\omega^2},\,\,\omega^4=\overline{\omega},
$$
and so
$$
\sum_{n=0}^\infty\frac{x^{5n}}{(5n)!}=\frac{1}{5}\sum_{j=1}^5\mathrm{e}^{\omega^j x}=\frac{1}{5}\left(\mathrm{e}^x+2\mathrm{e}^{x\cos(2\pi/5)}\cos\big(\sin(2\pi/5)\big)+2\mathrm{e}^{x\cos(4\pi/5)}\cos\big(\sin(4\pi/5)\big)\right).
$$

3147

主题

8384

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65372
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2023-2-1 07:36
Things Fourier - Power Overwhelming - Evan Chen 2016/06/03
计算$\displaystyle \binom{1000}{0} + \binom{1000}{3} + \dots + \binom{1000}{999}$.
We can consider the function
$$w : \mathbb Z/3 \rightarrow \mathbb C.$$
such that $w(0) = 1$ but $w(1) = w(2) = 0$. By abuse of notation we will also think of $w$ as a function $w : \mathbb Z \twoheadrightarrow \mathbb Z/3 \rightarrow \mathbb C$. Then the sum in question is
\begin{aligned} \sum_n \binom{1000}{n} w(n) &= \sum_n \binom{1000}{n} \sum_{k=0,1,2} \widehat w(k) \omega^{kn} \\ &= \sum_{k=0,1,2} \widehat w(k) \sum_n \binom{1000}{n} \omega^{kn} \\ &= \sum_{k=0,1,2} \widehat w(k) (1+\omega^k)^n. \end{aligned}In our situation, we have $\widehat w(0) = \widehat w(1) = \widehat w(2) = \frac13$, and we have evaluated the desired sum. More generally, we can take any periodic weight $w$ and use Fourier analysis in order to interchange the order of summation.

3147

主题

8384

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65372
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2023-2-1 07:42

一般情况

TravorLZH的回答
In general, it is possible for us to extract components of power series by playing with roots of unity. Particularly, let's say
$$
f(z)=\sum_{n=0}^\infty c_nz^n
$$
converges absolutely for some $z\in\mathbb C$. If we set $\zeta=e^{2\pi i/q}$ then
$$
\frac1q\sum_{r=0}^{q-1}\zeta^{-ra}f(\zeta^rz)=\sum_{k=0}^\infty c_{qk+a}z^{qk+a}\tag1
$$
Consequently, we get
$$
\sum_{k=0}^\infty{z^{3k+1}\over(3k+1)!}=\frac13\sum_{r=0}^2 e^{-2\pi ir/3}\exp(e^{2\pi ir/3}z)
$$
Proof for (1):

Given $f$ converges absolutely at $z$, we can plug in the power series expansion for $f(z)$ to get
\begin{aligned}
\sum_{r=0}^{q-1}\zeta^{-ra}\sum_{n=0}^\infty c_n\zeta^{rn}z^n
&=\sum_{n=0}^\infty c_nz^{n}\left(\sum_{r=0}^{q-1}\zeta^{r(n-a)}\right)
\end{aligned}If $n\equiv0\pmod q$, then
$$
\sum_{r=0}^{q-1}\zeta^{r(n-a)}=\sum_{r=0}^{q-1}1=q
$$
Otherwise we have $\zeta^{n-a}\ne1$:
$$
\sum_{r=0}^{q-1}\zeta^{r(n-a)}={\zeta^{q(n-a)}-1\over\zeta^{n-a}-1}=0
$$
Consequently, the purpose of sum of roots of unity in (1) is to extract coefficients from power series.

730

主题

1万

回帖

9万

积分

积分
93623
QQ

显示全部楼层

kuing 发表于 2023-2-3 03:52
与《撸题集》P.796~798 题目 5.6.38 思路类似。

手机版|悠闲数学娱乐论坛(第3版)

GMT+8, 2025-3-4 19:18

Powered by Discuz!

× 快速回复 返回顶部 返回列表