Forgot password?
 Create new account
View 143|Reply 3

[数论] roots of unity filter

[Copy link]

3151

Threads

8500

Posts

610K

Credits

Credits
66231
QQ

Show all posts

hbghlyj Posted at 2023-2-1 07:24:16 |Read mode
Last edited by hbghlyj at 2023-2-2 23:35:00参见Roots of Unity (Ray Li)Finite Fourier analysis
计算 $\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$
$$\frac{e^x+e^{-x}}2=\sum_{n=0}^\infty\frac{1^n+(-1)^n}2\cdot\frac{x^n}{n!}=\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$
计算 $\sum_{n=0}^{\infty} \frac{x^{3n}}{(3n)!}$
$$\frac{e^x+e^{ωx}+e^{ω^2x}}3=\sum_{n=0}^\infty\frac{1^n+ω^n+(ω^2)^n}3\cdot\frac{x^n}{n!}=\sum_{n=0}^\infty\frac{x^{3n}}{(3n)!}$$
其中 $ω=\cos (2\pi/3)+i\sin (2\pi/3)$. MSE

计算 $\sum_{n=0}^\infty \frac {x^{5n}} {(5n)!}$ MSE
Clearly
$$
\frac{1}{5}\sum_{j=1}^5\mathrm{e}^{\omega^j x}=\sum_{n=0}^\infty\frac{x^{5n}}{(5n)!}
$$
where $\omega=\mathrm{e}^{2\pi i/5}$, since
$$
\sum_{j=1}^5 \omega^{jn}=\left\{\begin{array}{ccc} 5&\text{if}& 5\mid n, \\ 0&\text{if} &5\not\mid n. \end{array}\right.
$$
But
$$
\omega=\cos (2\pi/5)+i\sin (2\pi/5), \,\,\omega^2=\cos (4\pi/5)+i\sin (4\pi/5),
\,\,\omega^3=\overline{\omega^2},\,\,\omega^4=\overline{\omega},
$$
and so
$$
\sum_{n=0}^\infty\frac{x^{5n}}{(5n)!}=\frac{1}{5}\sum_{j=1}^5\mathrm{e}^{\omega^j x}=\frac{1}{5}\left(\mathrm{e}^x+2\mathrm{e}^{x\cos(2\pi/5)}\cos\big(\sin(2\pi/5)\big)+2\mathrm{e}^{x\cos(4\pi/5)}\cos\big(\sin(4\pi/5)\big)\right).
$$

3151

Threads

8500

Posts

610K

Credits

Credits
66231
QQ

Show all posts

 Author| hbghlyj Posted at 2023-2-1 07:36:21
Things Fourier - Power Overwhelming - Evan Chen 2016/06/03
计算$\displaystyle \binom{1000}{0} + \binom{1000}{3} + \dots + \binom{1000}{999}$.
We can consider the function
$$w : \mathbb Z/3 \rightarrow \mathbb C.$$
such that $w(0) = 1$ but $w(1) = w(2) = 0$. By abuse of notation we will also think of $w$ as a function $w : \mathbb Z \twoheadrightarrow \mathbb Z/3 \rightarrow \mathbb C$. Then the sum in question is
\begin{aligned} \sum_n \binom{1000}{n} w(n) &= \sum_n \binom{1000}{n} \sum_{k=0,1,2} \widehat w(k) \omega^{kn} \\ &= \sum_{k=0,1,2} \widehat w(k) \sum_n \binom{1000}{n} \omega^{kn} \\ &= \sum_{k=0,1,2} \widehat w(k) (1+\omega^k)^n. \end{aligned}In our situation, we have $\widehat w(0) = \widehat w(1) = \widehat w(2) = \frac13$, and we have evaluated the desired sum. More generally, we can take any periodic weight $w$ and use Fourier analysis in order to interchange the order of summation.

3151

Threads

8500

Posts

610K

Credits

Credits
66231
QQ

Show all posts

 Author| hbghlyj Posted at 2023-2-1 07:42:23

一般情况

TravorLZH的回答
In general, it is possible for us to extract components of power series by playing with roots of unity. Particularly, let's say
$$
f(z)=\sum_{n=0}^\infty c_nz^n
$$
converges absolutely for some $z\in\mathbb C$. If we set $\zeta=e^{2\pi i/q}$ then
$$
\frac1q\sum_{r=0}^{q-1}\zeta^{-ra}f(\zeta^rz)=\sum_{k=0}^\infty c_{qk+a}z^{qk+a}\tag1
$$
Consequently, we get
$$
\sum_{k=0}^\infty{z^{3k+1}\over(3k+1)!}=\frac13\sum_{r=0}^2 e^{-2\pi ir/3}\exp(e^{2\pi ir/3}z)
$$
Proof for (1):

Given $f$ converges absolutely at $z$, we can plug in the power series expansion for $f(z)$ to get
\begin{aligned}
\sum_{r=0}^{q-1}\zeta^{-ra}\sum_{n=0}^\infty c_n\zeta^{rn}z^n
&=\sum_{n=0}^\infty c_nz^{n}\left(\sum_{r=0}^{q-1}\zeta^{r(n-a)}\right)
\end{aligned}If $n\equiv0\pmod q$, then
$$
\sum_{r=0}^{q-1}\zeta^{r(n-a)}=\sum_{r=0}^{q-1}1=q
$$
Otherwise we have $\zeta^{n-a}\ne1$:
$$
\sum_{r=0}^{q-1}\zeta^{r(n-a)}={\zeta^{q(n-a)}-1\over\zeta^{n-a}-1}=0
$$
Consequently, the purpose of sum of roots of unity in (1) is to extract coefficients from power series.

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2023-2-3 03:52:58
与《撸题集》P.796~798 题目 5.6.38 思路类似。

手机版Mobile version|Leisure Math Forum

2025-4-21 23:51 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list