Forgot password?
 Create new account
View 148|Reply 3

in the closure of Y+Z but not in Y+Z

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2023-8-27 05:59:21 |Read mode
Last edited by hbghlyj at 2023-8-27 06:08:00Functional Analysis I 2017: Problem Sheet 1 Hilary Ann Priestley
第6题是有关Sequence space
Screenshot 2023-08-27 at 05-47-46 17B4.1-sheet1of4.pdf.png
我有一点想法:
设$e_1=(1,0,0,\dots),e_2=(0,1,0,\dots),\dots$
则$x=\sum_{j=1}^\infty\frac1{j^2}e_{2j-1}$
证明$\boldsymbol{x\notin Y+Z}$:设$x=y+z,y\in Y,z\in Z$,则$z_{2j-1}=x_{2j-1}-y_{2j-1}=\frac1{j^2}$,则$z_{2j}=1$与$z_j\to0$矛盾.
证明$\boldsymbol{x\in\overline{Y+Z}}$:对于$y=\frac1{j^2}e_{2j-1}+e_{2j}\in Y,z=-e_{2j}\in Z$有$e_{2j}=y+z$
然后不会做了不理解closure of Y+Z怎么用

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2023-8-27 06:32:49
Last edited by hbghlyj at 2023-8-27 07:48:00哦。。我自己想出来了
令$x_n=\sum_{j=1}^n\frac1{j^2}e_{2j-1}\in Y+Z$
则$x-x_n=\sum_{j=n+1}^\infty\frac1{j^2}e_{2j-1}$
则$\|x-x_n\|=\frac1{(n+1)^2}\to0$
即$x\gets x_n$

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2023-8-27 16:34:46
$Y,Z$闭,但$Y+Z$不闭

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-8-28 12:11:20
hbghlyj 发表于 2023-8-27 16:34
$Y,Z$闭,但$Y+Z$不闭
$Y+Z$ 是奇数位 $o(n^{-2})$ 的收敛数列全体. 那么 $\overline{Y+Z}$ 当然就是 $X$ 了.

注: $Y+Z$ 包含一切有限数列, 而有限数列在 $c_0$ 中稠密.

手机版Mobile version|Leisure Math Forum

2025-4-20 22:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list