Forgot password?
 Create new account
View 117|Reply 4

$l_1≅c_0$*

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2023-9-11 16:29:17 |Read mode
Last edited by hbghlyj at 2023-9-11 21:31:00这帖的证明Surjectivity部分中,定义$S$为\[S(f) = \sum_{n\in\mathbb{N}} f(n) S(e_n)\]如何证明$S(f)\in l_1$

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

abababa Posted at 2023-9-11 18:13:47
发maven的证明,我没仔细看过这个证明。他定义了norm命令来表示范数。
$\newcommand{\norm}[1]{\left\lVert#1\right\rVert}$
对任意的$x = (\xi_1,\cdots,\xi_n,0,0,\cdots) \in c_0$,给定$y = (\eta_1,\cdots,\eta_n,\cdots) \in \ell^1$,则
\[\sum_{k=1}^{\infty}\abs{\eta_k\xi_k} = \le \sum_{k=1}^{\infty}\abs{\eta_k}\norm{x}_{\infty} = \norm{x}_{\infty}\norm{y}_1 < \infty\]

定义映射$\varphi: c_0 \to \mathbb{K}$为
\[\varphi(x) = \sum_{k=1}^{\infty}\abs{\eta_k\xi_k}, \qquad\qquad x = (\xi_1,\cdots,\xi_n,0,0,\cdots) \in c_0\]

显然$\varphi$是线性映射,而$\abs{\varphi(x)} \le \norm{x}_{\infty}\norm{y}_1$,所以$\norm{\varphi} \le \norm{y}_1$(1),于是$\varphi$是有界线性泛函,因此$\varphi \in c_0^*$。


\[
\delta_k =
\begin{cases}
\frac{\abs{\eta_k}}{\eta_k} & \eta_k \neq 0\\
0 & \eta_k = 0
\end{cases}
\]

则$\delta_k\eta_k = \abs{\eta_k}$,且对任意的正整数$k$都有$\abs{\delta_k} \le 1$。设$u_n = (\delta_1,\delta_2,\cdots,\delta_n,0,0,\cdots)$,显然$u_n \in c_0$且$\norm{u_n}_{\infty} \le 1$,而
\[\varphi(u_n) = \sum_{k=1}^{n}\eta_k\delta_k = \sum_{k=1}^{n}\abs{\eta_k}\]

令$n \to \infty$,由上式有
\[\norm{y}_1 = \sum_{k=1}^{\infty}\abs{\eta_k} = \lim_{n \to \infty}\varphi(u_n) \le \lim_{n \to \infty}\norm{\varphi}\norm{u_n}_{\infty} \le \lim_{n \to \infty}\norm{\varphi} = \norm{\varphi}(2)\]

由(1)(2)知$\norm{\varphi} = \norm{y}_1$,即对每个$y \in \ell^1$都存在$\varphi \in c_0^*$与之对应,使得$\norm{\varphi} = \norm{y_1}$,令$F: \ell^1 \to c_0^*, y \mapsto \varphi$,其中
\[\varphi(x) = \sum_{k=1}^{\infty}\eta_k\xi_k, \qquad\qquad x = (\xi_1,\cdots,\xi_n,0,0,\cdots) \in c_0\]

显然$F$是线性算子,且$\norm{F} = \norm{\varphi} = \norm{y}_1$,所以$F$是等距映射。下面证明$F$是满射。

对任意的$g \in c_0^*$,对于基底$(e_1,\cdots,e_n,0,0,\cdots) \in c_0$,设$g(e_k) = \eta_k$。令$u_n = (\delta_1,\cdots,\delta_n,0,0,\cdots) \in c_0$,则$\norm{u_n}_{\infty} \le 1$,且
\[g(u_n) = \sum_{k=1}^{n}\delta_kg(e_n) = \sum_{k=1}^{n}\delta_k\eta_k = \sum_{k=1}^{n}\abs{\eta_k}\]

所以对所有的$n$都有
\[\sum_{k=1}^{n}\abs{\eta_k} = g(u_n) = \abs{g(u_n)} \le \norm{g}\norm{u_n} \le \norm{g} < \infty\]

令$n \to \infty$即
\[\sum_{k=1}^{\infty}\abs{\eta_k} < \infty\]

所以$y = (\eta_1,\cdots,\eta_n,\cdots) \in \ell^1$。对任意的$x = (\xi_1,\cdots,\xi_m,0,0,\cdots) \in c_0$,令$x_n = (\xi_1,\cdots,\xi_n,0,0,\cdots)$,即$x_n$只取$x$的前$n$个分量,其余分量为零。显然$x_n \in c_0$,而$\norm{x-x_n}_{\infty} = \sup_{k > n}\abs{\xi_k}$,注意$x \in c_0$,因此当$n \to \infty$时$\norm{x-x_n}_{\infty} \to 0$,所以$x_n \to x$,由于$g$是有界线性泛函,因此$g$是连续的,所以$g(x_n) \to g(x)$,于是
\[g(x) = \lim_{n \to \infty}g(x_n) = \lim_{n \to \infty}\sum_{k=1}^{n}\xi_kg(e_k) = \lim_{n \to \infty}\sum_{k=1}^{n}\xi_k\eta_k = \sum_{k=1}^{\infty}\xi_k\eta_k = \varphi(x)\]

由$x$的任意性知$g = \varphi = F(y)$,由$g$的任意性知,对每个$g \in c_0^*$都存在$y \in \ell^1$使得$g = F(y)$,所以$F$是满射。结合$F$是等距映射,所以$F: \ell^1 \to c_0^*$是等距同构映射,因此$c_0^* = \ell^1$。

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2023-9-11 21:12:33
abababa 发表于 2023-9-11 18:13
对任意的$x = (\xi_1,\cdots,\xi_n,0,0,\cdots) \in c_0$,

$c_0$是收敛到0的序列。在2#好像理解为$c_0$是最终恒0的序列?

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2023-9-11 21:37:17
Last edited by hbghlyj at 2023-9-11 22:00:00定义\[f(n)=\left\{\begin{array}{lcl}
\frac{\overline g(n)}{|g(n)|}&:&g(n)\neq0\text{ and }n\leq N\\
0&:& g(n)=0\text{ or }n>N.
\end{array}\right.\]其中$\overline{g}$是复共轭.
则$f(n)g(n)=|g(n)|$
\[\sum_{n=1}^N|g(n)|=\sum_{n=1}^Ng(n)f(n)=|S(f)|\leq \|S\|\|f\|_\infty\leq\|S\|.\]
令$N\to\infty$得$g∈ℓ^1$

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-9-13 16:47:17
Last edited by Czhang271828 at 2023-9-13 16:58:00显然 $\ell^1\subseteq c_0^\ast$, 因为收敛数列均有界.

对任意数列 $(x_n)_{n\in \mathbb N}\notin \ell^1$, 我们只需找到 $(y_n)_{n\in \mathbb N}\notin \ell^1$ 使得
$$
\lim_{n\to\infty}\dfrac{|y_n|}{|x_n|}=0\quad (\text{不妨设 }x_n\neq 0).
$$
换言之, 证明不存在部分和发散速率最慢的数列即可, 这也是大一高数常见的题目. 若 $x_n$ 不收敛, 取发散子列 $x_{n_k}$, 令 $y_{n_k}=x_{n_k}/|x_{n_k}|$ (其余 $y_n=0$) 即可; 若 $x_n$ 收敛, 构造 $y_n=\dfrac{|x_n|}{|x_1|+\cdots +|x_{n-1}|}$ 即可.

又: 可以用图形法证明 $\displaystyle\sum_{n\geq 0}\dfrac{|x_n|}{|x_1|+\cdots +|x_{n-1}|}=\infty$, 直接搬运 MSE 的图.

手机版Mobile version|Leisure Math Forum

2025-4-20 22:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list