Forgot password?
 Create new account
View 163|Reply 2

$\{x∈ℓ^2:(j x_j)∈ℓ^1\}$

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2023-8-31 13:32:57 |Read mode
Last edited by hbghlyj at 2023-8-31 14:00:00Functional Analysis I 2017: Problem Sheet 2 Hilary Ann Priestley
$$X:=\left\{x∈ℓ^2:\left(j x_j\right)∈ℓ^1\right\} ⊂ ℓ^2$$Is $X$ a Banach space? Screenshot 2023-08-31 at 13-30-58 17B4.1-sheet2of4.pdf.png

我猜答案是Yes, $X$ is a Banach space.
因$X\subset ℓ^2$且$ℓ^2$ is a Banach space,为证明$X$ is a Banach space只需证明$X$ is closed in $ℓ^2$,即
$x^{(n)}∈X$依$\ell^2$范数收敛于$x∈\ell^2$,证明$x∈X$.

因$x∈X$等价于$∑_jj|x_j|<∞$,问题可以转化为:
$x^{(n)}$依$\ell^2$范数收敛于$x$,且$\forall n$有$∑_jj|x^{(n)}_j|<∞$,证明$∑_jj|x_j|<∞$.

又转化为问题:
$\begin{rcases}∑_j(x_j-x^{(n)}_j)^2\to0\\
∑_jj|x_j^{(n)}|<\infty\\
∑_jx_j^2<\infty
\end{rcases}$是否能推出$∑_jj|x_j|<∞$

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2023-8-31 14:03:02
Last edited by hbghlyj at 2023-8-31 14:15:00剛才我猜错,现在觉得$X$不是Banach space.
取$x_n=(1,\frac12,\dots,\frac1n,0,\dots),x=(1,\frac12,\dots)$
则$x_n\to x$
$x_n\in X$且$x\notin X$.


第2问Is $P$ bounded?
很简单:
Let $e_1=(1,0,…),e_2=(0,1,0,…),…$ then $Pe_n=ne_1$, so $P$ is unbounded.

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-8-31 20:17:27
$X$ 包含所有有限数列, 而有限数列在 $\ell^2$ 中稠密. 从而 $X$ 是 Banach 空间当且仅当 $X=\ell^2$. 而 $\ell^2$ 显然比 $X$ 来得大, 考虑 $(1/n)_{n\geq 1}\in\ell^2$ 即可.

方法类似 kuing.cjhb.site/forum.php?mod=redirect&go … 900&fromuid=3097

手机版Mobile version|Leisure Math Forum

2025-4-20 22:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list