Forgot password?
 Create new account
View 110|Reply 4

[几何] 向量外积问题

[Copy link]

83

Threads

51

Posts

763

Credits

Credits
763

Show all posts

lihpb Posted at 2024-11-14 17:32:16 |Read mode
Last edited by hbghlyj at 2025-3-8 04:18:16引理 2 设 $\{u_1, u_2, \cdots, u_n\}$ 是 $E^n$ 中线性无关的向量组,$\Phi\in \bigwedge^n(E^n)$. 则\[
\Phi\left(u_2 \wedge u_3 \cdots \wedge u_n, u_1 \wedge u_3 \cdots \wedge u_n, \cdots, u_1 \wedge u_2 \cdots \wedge u_{n-1}\right)=(-1)^{\lfloor n/2\rfloor} \Phi(u_1, u_2, \cdots, u_n)^{n-1}
\]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2024-11-15 03:55:36
设$D=\det(u_1,\dots,u_n),D\ne0$.
$v_1=u_2 \wedge u_3 \cdots \wedge u_n$,
$v_2=u_1 \wedge u_3 \cdots \wedge u_n$,
$\cdots\cdots$
$v_n=u_1 \wedge u_2 \cdots \wedge u_{n-1}$, 则$v_i^Tu_j=\begin{cases}0&i\ne j\\(-1)^{i-1}D&i=j\end{cases}$

把行向量$v_i^T$排成一个n×n矩阵$\pmatrix{v_1^T\\\vdots\\v_n^T}$,把列向量$u_i$排成一个n×n矩阵$\pmatrix{u_1&\cdots&u_n}$,
因为当$i\ne j$时$v_i^Tu_j=0$,所以这两个矩阵之积为对角矩阵$$\pmatrix{v_1^T\\\vdots\\v_n^T}\pmatrix{u_1&\cdots&u_n}=\operatorname{diag}(D,-D,D,-D,\dots,(-1)^{n-1}D)$$
(右边的$D,-D,D,-D,\dots$中,$-D$共出现了$\lfloor n/2\rfloor$次)
这三个矩阵都是n×n矩阵,两边取$\det$得
$$\det(v_1,\dots,v_n)\det(u_1,\dots,u_n)=(-1)^{\lfloor n/2\rfloor}D^n$$
代入$D=\det(u_1,\dots,u_n)$,
$$\det(v_1,\dots,v_n)D=(-1)^{\lfloor n/2\rfloor}D^n$$

$$\det(v_1,\dots,v_n)=(-1)^{\lfloor n/2\rfloor}\det(u_1,\dots,u_n)^{n-1}$$

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2024-11-15 04:17:01
$n=2$,$(-1)^{\lfloor n/2\rfloor}=-1$,验证:
  1. Simplify[Det[{{x2,y2},{x1,y1}}]==-Det[{{x1,y1},{x2,y2}}]]^1
Copy the Code

$n=3$,$(-1)^{\lfloor n/2\rfloor}=-1$,验证:
  1. Simplify[Det[{Cross[{x2,y2,z2},{x3,y3,z3}],Cross[{x1,y1,z1},{x3,y3,z3}],Cross[{x1,y1,z1},{x2,y2,z2}]}]==-Det[{{x1,y1,z1},{x2,y2,z2},{x3,y3,z3}}]^2]
Copy the Code

$n=4$,$(-1)^{\lfloor n/2\rfloor}=1$,验证:
  1. Simplify[Det[{Cross[{x2,y2,z2,w2},{x3,y3,z3,w3},{x4,y4,z4,w4}],Cross[{x1,y1,z1,w1},{x3,y3,z3,w3},{x4,y4,z4,w4}],Cross[{x1,y1,z1,w1},{x2,y2,z2,w2},{x4,y4,z4,w4}],Cross[{x1,y1,z1,w1},{x2,y2,z2,w2},{x3,y3,z3,w3}]}]==Det[{{x1,y1,z1,w1},{x2,y2,z2,w2},{x3,y3,z3,w3},{x4,y4,z4,w4}}]^3]
Copy the Code

$n=5$,$(-1)^{\lfloor n/2\rfloor}=1$,验证:
  1. Simplify[Det[{Cross[{x2,y2,z2,w2,u2},{x3,y3,z3,w3,u3},{x4,y4,z4,w4,u4},{x5,y5,z5,w5,u5}],Cross[{x1,y1,z1,w1,u1},{x3,y3,z3,w3,u3},{x4,y4,z4,w4,u4},{x5,y5,z5,w5,u5}],Cross[{x1,y1,z1,w1,u1},{x2,y2,z2,w2,u2},{x4,y4,z4,w4,u4},{x5,y5,z5,w5,u5}],Cross[{x1,y1,z1,w1,u1},{x2,y2,z2,w2,u2},{x3,y3,z3,w3,u3},{x5,y5,z5,w5,u5}],Cross[{x1,y1,z1,w1,u1},{x2,y2,z2,w2,u2},{x3,y3,z3,w3,u3},{x4,y4,z4,w4,u4}]}]==Det[{{x1,y1,z1,w1,u1},{x2,y2,z2,w2,u2},{x3,y3,z3,w3,u3},{x4,y4,z4,w4,u4},{x5,y5,z5,w5,u5}}]^4]
Copy the Code

83

Threads

51

Posts

763

Credits

Credits
763

Show all posts

 Author| lihpb Posted at 2024-11-15 09:45:12
hbghlyj 发表于 2024-11-15 03:55
设$D=\det(u_1,\dots,u_n),D\ne0$.
$v_1=u_2 \wedge u_3 \cdots \wedge u_n$,
$v_2=u_1 \wedge u_3 \cdots  ...
kuing.cjhb.site/forum.php?mod=viewthread&tid=12577

帮我看看这个,也是行列式的问题

Comment

已解决!  Posted at 2025-3-8 04:42

手机版Mobile version|Leisure Math Forum

2025-4-21 14:27 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list