Forgot password?
 Create new account
View 1201|Reply 1

外形式的外积

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2014-8-16 20:58:37 |Read mode
\(f\)是向量空间\(V\)上的\(r\)次外形式,令
\[({A}_{r}(f))\left({u}_{{1}},···,{u}_{{r}} \right)=\cfrac{1}{r!}\delta_\left( 1···r\right)^\left({i}_{1}···{i}_{r} \right)\left({u}_{{i}_{1}},···,{u}_{{i}_{r}} \right)\](求和约定)
定义外积
\[f\wedge g=\cfrac{(r+s)!}{r!s!}({A}_{r+s}(f\otimes g))
\]
(\(f\),\(g\)是向量空间\(V\)上的\(r\),\(s\)次外形式)
若\(f\),\(g\),\(h\)是向量空间\(V\)上的\(r\),\(s\),\(t\)次外形式
证明:
\[(f\wedge g)\wedge h=\cfrac{(r+s+t)!}{r!s!t!}({A}_{r+s+t}(f\otimes g \otimes h))\]

3148

Threads

8498

Posts

610K

Credits

Credits
66193
QQ

Show all posts

hbghlyj Posted at 2023-3-3 08:46:49

手机版Mobile version|Leisure Math Forum

2025-4-21 01:38 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list