Forgot password?
 Create new account
View 101|Reply 1

[数论] $(m_1+n_1 i)^{a_1} \ldots(m_k+n_k i)^{a_k}\inR$ 则 $a_j=0$

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2024-12-17 21:01:31 |Read mode
$\equiv1\bmod4$ 的素数为 $5,13,17,\dots$
设 $m_k,n_k$ 为使得 $m_k^2+n_k^2=p_k$ 的正整数,其中 $p_k$ 是第 $k$ 个 $\equiv1\bmod4$ 的素数。

jstor.org/stable/2691462 写道:
若存在 $a_1,\dots,a_k\inZ$ 使得 $\left(m_1+n_1 i\right)^{a_1} \ldots\left(m_k+n_k i\right)^{a_k}\inR$,则 $a_1=\dots=a_k=0$.

怎么证明呢?

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2024-12-17 21:05:09
$m_1=1,n_1=2$
$m_2=2,n_2=3$
$m_3=1,n_3=4$
$\dots$

$k=1$的情况:$(1+2i)^{a_1}\inR$ 则 $a_1=0$.
$k=2$的情况:$(1+2i)^{a_1}(2+3i)^{a_2}\inR$ 则 $a_1=a_2=0$.
$k=3$的情况:$(1+2i)^{a_1}(2+3i)^{a_2}(1+4i)^{a_3}\inR$ 则 $a_1=a_2=a_3=0$.

手机版Mobile version|Leisure Math Forum

2025-4-21 14:11 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list