Forgot password
 Register account
View 3694|Reply 5

[函数] $0<f(x)<-f'(x)$,证明$xf(x)>\frac{1}{x}f(\frac{1}{x}),0<x<1$

[Copy link]

3208

Threads

7835

Posts

52

Reputation

Show all posts

hbghlyj posted 2025-6-1 08:55 |Read mode

Comment

神奇的是楼主竟然用图片😯  posted 2025-6-1 13:52
可能是当时楼主马上要去睡觉😴懒得改成代码了  posted 2025-6-1 15:43

51

Threads

148

Posts

2

Reputation

Show all posts

1+1=? posted 2025-6-1 13:18 from mobile
$0<f(x)<-f'(x)$等价于$e^xf(x)$单调递减,令$e^xf(x)=g(x)$,若$0<x<1$显然$g(x)>g(\frac{1}{x})$,要证明$xf(x)>\frac{1}{x}f(\frac{1}{x})$等价于证明$\frac{x}{e^x}>\frac{\frac{1}{x}}{e^{\frac{1}{x}}}$.

Comment

So we must prove
$$e^{\frac{1}{x}-x}>\dfrac{1}{x^2},\qquad0<x<1$$
$$\Longleftrightarrow \ln{x}-x>\ln{\dfrac{1}{x}}-\dfrac{1}{x},0<x<1$$  posted 2025-6-1 18:13
apparently  posted 2025-6-1 19:14
1+1=2吗?

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-19 04:00 GMT+8

Powered by Discuz!

Processed in 0.013751 seconds, 31 queries