Forgot password?
 Register account
View 2305|Reply 5

[函数] $0<f(x)<-f'(x)$,证明$xf(x)>\frac{1}{x}f(\frac{1}{x}),0<x<1$

[Copy link]

3163

Threads

7939

Posts

610K

Credits

Credits
64293
QQ

Show all posts

hbghlyj Posted 2025-6-1 08:55 |Read mode

Comment

神奇的是楼主竟然用图片😯  Posted 2025-6-1 13:52
可能是当时楼主马上要去睡觉😴懒得改成代码了  Posted 2025-6-1 15:43

36

Threads

111

Posts

920

Credits

Credits
920

Show all posts

1+1=? Posted 2025-6-1 13:18 From mobile phone
$0<f(x)<-f'(x)$等价于$e^xf(x)$单调递减,令$e^xf(x)=g(x)$,若$0<x<1$显然$g(x)>g(\frac{1}{x})$,要证明$xf(x)>\frac{1}{x}f(\frac{1}{x})$等价于证明$\frac{x}{e^x}>\frac{\frac{1}{x}}{e^{\frac{1}{x}}}$.

Comment

So we must prove
$$e^{\frac{1}{x}-x}>\dfrac{1}{x^2},\qquad0<x<1$$
$$\Longleftrightarrow \ln{x}-x>\ln{\dfrac{1}{x}}-\dfrac{1}{x},0<x<1$$  Posted 2025-6-1 18:13
apparently  Posted 2025-6-1 19:14

Mobile version|Discuz Math Forum

2025-6-3 13:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit