Forgot password?
 Create new account
View 2251|Reply 1

[不等式] 从几何意义出发【星形线】

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2014-2-1 09:02:44 |Read mode
Last edited by hbghlyj at 2025-4-11 10:31:51已知$\theta_{i}\inR,\theta_{i}<\theta_{i+1}$
求证:\[\sum_{i=1}^n\sqrt{1-\cos(\theta_{i+1}-\theta_{i})}<\frac{\theta_n-\theta_1}{\sqrt{2}}-\sqrt{1-\cos(\theta_{n}-\theta_{1})}\]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2014-2-2 19:14:26
Last edited by hbghlyj at 2025-4-11 10:32:49
已知$\sum_{i=1}^n\sqrt{1-\cos(\theta_{i+1}-\theta_{i})}<\frac{\theta_n-\theta_1}{\sqrt{2}}-\sqrt{1-\cos(\theta_{n}-\theta_{1})}$
青青子衿 发表于 2014-2-1 09:02

在单位圆上任意两点$A(\cos\theta_1,\sin\theta_1)$,点$B(\cos\theta_2,\sin\theta_2)$,有$|AB|<$弧$AB$,则(翻译为代数语言为)
\[\sqrt{(\cos\theta_1-\cos\theta_2)^2+(\sin\theta_1-\sin\theta_2)^2}<\theta_2-\theta_1\]
推广为:
\[\sqrt{(\cos^3\theta_1-\cos^3\theta_2)^2+(\sin^3\theta_1-\sin^3\theta_2)^2}<星形线的弧长\]

手机版Mobile version|Leisure Math Forum

2025-4-20 22:07 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list