Forgot password?
 Create new account
View 1539|Reply 7

[数论] 小数化分数求分母最值

[Copy link]

65

Threads

414

Posts

3556

Credits

Credits
3556

Show all posts

Tesla35 Posted at 2018-2-25 15:22:20 |Read mode
Last edited by hbghlyj at 2025-4-1 05:18:17已知真分数 $\frac{n}{m}$($m, n$ 均为正整数)转化为小数时,小数点后的前 4 位依次为
$2,0,1,3$ .则 $m$ 的最小值是 $\qquad$ .

Related collections:

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2018-2-25 22:09:37
由题意,设\[ m=5n-1 \]得\[ \dfrac{2014}{10000}>\dfrac{n}{5n-1}\geqslant \dfrac{2013}{10000} \]解得\[ n=29 \]或\[ n=30 \]故\[ m_{min}=144 \]

15

Threads

948

Posts

110K

Credits

Credits
12412

Show all posts

色k Posted at 2018-2-27 14:39:57
回复 2# 乌贼

为什么只需考虑5n-1而不用考虑其他情形?

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2018-2-27 19:10:31
Last edited by 乌贼 at 2018-2-27 19:16:00回复 3# 色k
可设$ m=n-k=1,2,3,\cdots  $,再证$ k=1 $时$ n $最小(但很复杂)。因为是小学题,所以……,然后中验算

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2018-2-27 20:26:28
回复 4# 乌贼


    当时,楼主截图有个六年级,直觉上,分母越小,那数值相应较大,我就猜,这个数是0.20139,但眼睛一看,化分数分母大呢。
   
   
   现在,结果$29/144=0.2013888888888888\cdots$,竟然有种“不谋而合”之感。

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2018-2-27 20:41:18
回复  乌贼


    当时,楼主截图有个六年级,直觉上,分母越小,那数值相应较大,我就猜,这个数是0.2013 ...
isee 发表于 2018-2-27 20:26
如果要严格证明,怕又要用到连分数理论了。
04128.png

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2018-2-27 20:58:11

65

Threads

414

Posts

3556

Credits

Credits
3556

Show all posts

 Author| Tesla35 Posted at 2018-2-27 23:35:46

手机版Mobile version|Leisure Math Forum

2025-4-20 22:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list