Forgot password
 Register account
View 1799|Reply 3

[数列] 周期性

[Copy link]

186

Threads

206

Posts

0

Reputation

Show all posts

guanmo1 posted 2018-5-3 22:04 |Read mode
Last edited by hbghlyj 2025-3-19 18:21定义数列 $\an: a_1=3, a_{i+1}=3^a(i \inN)$ ,问从 00 到 99 中,哪些是无限多个 $a_i$ 的十进制表示式的最后两个数字?

Related threads

24

Threads

1017

Posts

46

Reputation

Show all posts

战巡 posted 2018-5-5 08:03
回复 1# guanmo1


这里用$b_n$表示$a_n$的最末两位数字好了,即$b_n=a_n \mod 100$
首先观察得到,$3^n \mod 100$遵循每$20$一循环,即$3^n \mod 100=3^{n+20} \mod 100$,也就是我们只需要考察$b_n \mod 20$的值即可知道$b_{n+1}=3^{a_n} \mod 100$的值
而且由于$20$只关乎最后两位,也很容易得到$b_n \mod 20=a_n \mod 20$,因此直接观察$b_n$会简单的多

于是我们首先观察前面几项
$a_1=b_1=3$,$b_1 \mod 20=3$
$a_2=b_2=3^3=27$,$b_2 \mod 20=7$
$a_3 \mod 100=b_3=3^{b_2 \mod 20} \mod 100=3^7 \mod 100=87$
于是又有$b_3\mod 20=7$,后面就循环了
所以呢,$b_1=3, b_2=27, b_n=87,n\ge 3$

186

Threads

206

Posts

0

Reputation

Show all posts

original poster guanmo1 posted 2018-5-7 12:50
谢谢!

21

Threads

23

Posts

0

Reputation

Show all posts

chudengshuxue posted 2018-5-10 21:18
Last edited by hbghlyj 2025-3-19 17:35
战巡 发表于 2018-5-5 00:03
也就是我们只需要考察$b_n \mod 20$的值即可知道$b_{n+1}=3^{a_n} \mod 100$的值
数论白痴表示这一步没看明白。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 05:52 GMT+8

Powered by Discuz!

Processed in 0.027791 seconds, 29 queries