|
Last edited by hbghlyj at 2025-4-9 03:06:13其实我那讨论组就是原来的减压群,也就是H为主的,不过偶尔还是有人发题,然而最近我的撸题欲严重下降,基本上思考五分钟还没想法就pass了,但有的题至少表面看上去还是有点玩头,故此还是发上来这里先放着,别浪费了。
1、角**,夜** 19:09:24 2019/11/16
正实数 $x_1,x_2,x_3,a_1,a_2,a_3$ 满足:$\left\{\begin{array}{l}a_1^2+x_2^2+x_3^2=1 \\ x_1^2+a_2^2+x_3^2=1 \\ x_1^2+x_2^2+a_3^2=1 \\ \frac{a_1}{x_1}+\frac{a_2}{x_2}+\frac{a_3}{x_3}=3\end{array}\right.$,求证:$\frac{a_1^3}{x_1}+\frac{a_2^3}{x_2}+\frac{a_3^3}{x_3}=1$
2、张* 10:46:21 2019/11/19
如图1,一个点A在一个椭圆的外部,从点A引出两条切线AB,AC与该椭圆分别相切于点B及点C,设动点P在椭圆弧BC上运动(不与B,C重合),两条直线BP,CP分别交对边AC, AB于点D,E,且不论点P的位置如何,保持“面积比 $\frac{S_{P D A E}}{S_{\triangle P B C}}$ 始终是一个常数”(即四边形PDAE的面积与三角形PBC的面积之比始终不变),
(1)试求出该常数的具体的数值;
(2)设直线AP 交对边BC于点Q,试求线段比$PQ\over AP$的最大可能值.
%20ellipse%20(3%20and%202)%0A%5Ccoordinate%20(B)%20at%20(%7B3*cos(160)%7D,%20%7B2*sin(160)%7D);%0A%5Ccoordinate%20(C)%20at%20(%7B3*cos(20)%7D,%20%7B2*sin(20)%7D);%0A%0A%5Ccoordinate%20(A)%20at%20(0,5.85);%0A%0A%5Cnode%20%5Babove%5D%20at%20(A)%20%7B%24A%24%7D;%0A%5Cnode%20%5Babove%20left%5D%20at%20(B)%20%7B%24B%24%7D;%0A%5Cnode%20%5Babove%20right%5D%20at%20(C)%20%7B%24C%24%7D;%0A%0A%5Ccoordinate%20(P)%20at%20(80:3%20and%202);%0A%0A%5Cpath%5Bname%20path=AC%5D%20(A)%20--%20(C);%0A%5Cpath%5Bname%20path=BP%5D%20(B)%20--%20(%24(B)!2!(P)%24);%0A%5Cpath%20%5Bname%20intersections=%7Bof=AC%20and%20BP,%20by=D%7D%5D;%0A%0A%5Cpath%5Bname%20path=AB%5D%20(A)%20--%20(B);%0A%5Cpath%5Bname%20path=CP%5D%20(C)%20--%20(%24(C)!2!(P)%24);%0A%5Cpath%20%5Bname%20intersections=%7Bof=AB%20and%20CP,%20by=E%7D%5D;%0A%0A%5Cnode%20%5Bright%5D%20at%20(D)%20%7B%24D%24%7D;%0A%5Cnode%20%5Bleft%5D%20at%20(E)%20%7B%24E%24%7D;%0A%0A%5Cfill%5Bgray!50%5D%20(P)%20--%20(C)%20--%20(B)%20--%20cycle;%0A%5Cfill%5Bviolet!50%5D%20(A)%20--%20(E)%20--%20(P)%20--%20(D)%20--%20cycle;%0A%5Cdraw%20%5Bthick%5D%20(A)%20--%20(B)%20--%20(C)--cycle%20(C)--(E)%20(B)--(D);%0A%5Cnode%20%5Babove%5D%20at%20(P)%20%7B%24P%24%7D;%0A%0A%5Cpath%5Bname%20path=BC%5D%20(B)%20--%20(C);%0A%5Cpath%5Bname%20path=AP%5D%20(A)%20--%20(%24(A)!2!(P)%24);%0A%5Cpath%20%5Bname%20intersections=%7Bof=BC%20and%20AP,%20by=Q%7D%5D;%0A%5Cdraw(A)--(Q);%0A%5Cnode%20%5Bbelow%5D%20at%20(Q)%20%7B%24Q%24%7D;%0A%5Cend%7Btikzpicture%7D)
3、似*** 21:50:28 2019/11/19
从这个3×3×3立方体中移除8个单位立方体,你能得到的最大表面面积是多少?
%20are%20chosen%20as:%0A%5Cnewcommand%7B%5CdrawcubeAt%7D%5B3%5D%7B%25%0A%20%20%20%20%5Cpgfmathsetmacro%7B%5Cx%7D%7B%231%7D%25%0A%20%20%20%20%5Cpgfmathsetmacro%7B%5Cy%7D%7B%232%7D%25%0A%20%20%20%20%5Cpgfmathsetmacro%7B%5Cz%7D%7B%233%7D%25%0A%20%20%20%20%25%20Draw%20the%20top%20face%20(using%20a%20medium%20color)%0A%20%20%20%20%5Cfilldraw%5Bfill=redxy%5D(%5Cx,%5Cy,%5Cz+1)--+(1,0,0)--+(1,1,0)--+(0,1,0)--cycle%0A%20%20%20%20%25%20Draw%20the%20front%20face%20(using%20a%20darker%20color)%0A%20%20%20%20%5Cfilldraw%5Bfill=redyz%5D(%5Cx,%5Cy,%5Cz)--+(0,1,0)--+(0,1,1)--+(0,0,1)--cycle%0A%20%20%20%20%25%20Draw%20the%20left%20face%20(using%20a%20light%20color)%0A%20%20%20%20%5Cfilldraw%5Bfill=redxz%5D(%5Cx,%5Cy,%5Cz)--+(1,0,0)--+(1,0,1)--+(0,0,1)--cycle;%0A%7D;%0A%0A%25%20The%20cubes%20are%20drawn%20in%20an%20order%20that%20helps%20with%20overlapping%E2%80%94%0A%25%20iterating%20from%20high%20to%20low%20along%20all%20axes.%0A%5Cforeach%20%5Ci%20in%20%7B2,1,0%7D%7B%25%0A%20%20%5Cforeach%20%5Cj%20in%20%7B2,1,0%7D%7B%25%0A%20%20%20%20%5Cforeach%20%5Ck%20in%20%7B0,1,2%7D%7B%25%0A%20%20%20%20%20%20%5CdrawcubeAt%7B%5Ci%7D%7B%5Cj%7D%7B%5Ck%7D%0A%20%20%20%20%7D%25%0A%20%20%7D%25%0A%7D%0A%0A%5Cend%7Btikzpicture%7D)
4、kuing 12:49:59 2019/11/18
打一成语,求解 |
|