Forgot password?
 Register account
View 3365|Reply 13

[不等式] 三角多项式不等式

[Copy link]

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2013-11-8 20:36 |Read mode
$\displaystyle\sum_{k=1}^n\frac{\sin kx}{k}\geqslant0$

4

Threads

57

Posts

388

Credits

Credits
388

Show all posts

零定义 Posted 2013-11-8 21:19
回复 1# 青青子衿
恒成立?咋么的可能呢...

0

Threads

413

Posts

6098

Credits

Credits
6098
QQ

Show all posts

爪机专用 Posted 2013-11-8 21:26
变量范围交待一下

7

Threads

52

Posts

393

Credits

Credits
393

Show all posts

icesheep Posted 2013-11-8 21:30
Last edited by icesheep 2013-11-8 21:37Fejer-Jackson-Gronwall 不等式,范围是 $x \in \left( {0,\pi } \right)$

这里有另一个证法和对上界的估计:tieba.baidu.com/p/1770844577

可以用数学归纳法做。如果最小值点是内点,设为 ${x_0}$ 那么其一阶导数为零。
\[0 = \sum\limits_{k = 1}^n {\cos k{x_0}}  = \frac{{\sin \left( {n + \frac{1}{2}} \right){x_0} - \sin \frac{{{x_0}}}{2}}}{{2\sin \frac{{{x_0}}}{2}}}\]
或者有 $\left( {n + \frac{1}{2}}\right){x_0}=\frac{{{x_0}}}{2}+2k\pi$ 或者有 $\left({n+\frac{1}{2}}\right){x_0}=-\frac{{{x_0}}}{2}+\left({2k+1}\right)\pi $
\[\sin n{x_0} = \sin \left( {n + \frac{1}{2}} \right){x_0}\cos \frac{{{x_0}}}{2} - \cos \left( {n + \frac{1}{2}} \right){x_0}\sin \frac{{{x_0}}}{2}\]
于是 $\sin n{x_0} = 0$ 或 $\sin n{x_0} = \sin {x_0} > 0$
\[\sum\limits_{k = 1}^n {\frac{{\sin k{x_0}}}{k}}  = \frac{{\sin n{x_0}}}{n} + \sum\limits_{k = 1}^{n - 1} {\frac{{\sin k{x_0}}}{k}} \]
于是问题化归到 n-1 时的情况。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2013-11-8 22:24
回复 4# icesheep
那个贴吧里 彩色の夢∩o∩搞了个上界
彩色の夢∩o∩是谁啊?好像在kk的群里出现过?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2013-11-9 00:26
回复  icesheep
那个贴吧里 彩色の夢∩o∩搞了个上界
彩色の夢∩o∩是谁啊?好像在kk的群里出现过? ...
其妙 发表于 2013-11-8 22:24
不是我的群,是hjj的群,那个香港妹纸。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-10-6 19:16
相关:
内链 - $\operatorname{sinc}x$无穷级数
Chebfun examples - Fejer-Jackson inequality
MathOverflow - a question on the sine function
另外:
@彩色の夢∩o∩又在
数学研发论坛 - 差分方程求解问题
出现过.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-10-6 22:23

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2025-5-5 22:40

求证:$\sum_{i=1}^n\frac{\sin{ix}}{i}>0,x\in (0,\pi) $

\[  \sum_{i=1}^n\frac{\sin{ix}}{i}>0,x\in (0,\pi) \]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2025-5-6 05:19

吉布斯现象发生在信号跳跃不连续点附近。它表明,无论傅里叶级数中包含多少项,在不连续点附近总会存在过冲错误。
超调量始终约为跳跃大小的 8.9489872236%
en.wikipedia.org/wiki/Gibbs_phenomenon#Formal … the_Gibbs_phenomenon
$\limsup _{N\to \infty }S_{N}f(x_{N})\leq f(x_{0}^{+})+c\cdot (0.089489872236\dots )$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2025-5-6 05:48
$\sum_{k=1}^\infty\frac{\sin{kx}}{k}=\frac{\pi-x}2,x\in(0,\pi)$
FourierSinSeries[(π - x)/2, x, n]
  1. FullSimplify[D[Sum[Sin[n x]/n,{n,1,∞}],x],Assumptions->x∈Reals]
Copy the Code

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2025-5-6 05:53
Si(Pi) 1.8519$\DeclareMathOperator{\Si}{Si}$
$$\lim_{n\to\infty}\max_{0<x<\pi}\sum_{k=1}^n\frac{\sin{kx}}{x}=\Si(\pi)$$
n=100 {1.83636, {x->0.0311049}}
n=1000 {1.85037, {x->0.00313845}}

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2025-5-6 06:00
我们首先将所讨论的和与Dirichlet核联系起来,找到其取得最大值的点,然后证明在$n\to\infty$极限下,这个最大值收敛到经典的正弦积分
$$
\Si(\pi)\;=\;\int_{0}^{\pi}\frac{\sin t}{t}\,dt.
$$
回忆Dirichlet核
$$
D_n(t)\;=\;\sum_{k=-n}^{n}e^{ikt}=\;1 \;+\;2\sum_{k=1}^n\cos(kt)=\;\frac{\sin\!\bigl((n+\tfrac12)t\bigr)}{\sin(t/2)}.
$$
由于
$$
\int_{0}^{x}D_n(t)\,dt=\int_{0}^{x}\Bigl(1+2\sum_{k=1}^n\cos(kt)\Bigr)\,dt=x +2\sum_{k=1}^n\frac{\sin(kx)}{k},
$$
我们立刻得到恒等式
$$
\sum_{k=1}^n\frac{\sin(kx)}{k}=\frac12\int_{0}^{x}D_n(t)\,dt\;-\;\frac{x}{2}.
$$
如果我们将
$$
F_n(x)=\sum_{k=1}^n\frac{\sin(kx)}{k}
$$
看作在区间$0<x<\pi$上的函数,则其临界点满足
$$
F_n'(x)=\sum_{k=1}^n\cos(kx)
=\frac{D_n(x)-1}{2}
=0
\quad\Longrightarrow\quad
D_n(x)=1.
$$
然而,$\displaystyle\int_0^x D_n(t)\,dt$的第一个局部最大值实际上出现在$D_n$的第一个正零点处,即
$$
x_n=\frac{\pi}{\,n+\tfrac12\,}.
$$
可以验证(通过比较核的相邻极值)$F_n(x)$在$(0,\pi)$上的全局最大值确实出现在这里。

我们令$x=x_n$,则有
$$
F_n(x_n)=\sum_{k=1}^n\frac{\sin\bigl(k\,\tfrac{\pi}{n+1/2}\bigr)}{k}=\frac12\int_{0}^{x_n}D_n(t)\,dt-\frac{x_n}{2}.
$$
由于$x_n\to0$当$n\to\infty$时,$-x_n/2$项在极限中消失。因此
$$
\lim_{n\to\infty}F_n(x_n)=\frac12\lim_{n\to\infty}\int_{0}^{x_n}\frac{\sin\bigl((n+\tfrac12)t\bigr)}{\sin(t/2)}\,dt.
$$
做变量替换
$$
u=(n+\tfrac12)\,t,\qquad
t=\frac{u}{\,n+\tfrac12\,},\qquad
dt=\frac{du}{\,n+\tfrac12\,}.
$$
于是
$$
\int_{0}^{x_n}
\frac{\sin\!\bigl((n+\tfrac12)t\bigr)}{\sin(t/2)}\,dt=\int_{0}^{\pi}
\frac{\sin u}{\sin\!\bigl(u/(2n+1)\bigr)}\frac{du}{\,n+\tfrac12\,}.
$$
但对于固定$u$且$n\to\infty$,
$\displaystyle\sin\!\bigl(u/(2n+1)\bigr)\sim u/(2n+1)$。因此被积函数趋于
$$
\frac{\sin u}{\,u/(2n+1)\,}\,\frac1{\,n+1/2\,}=2\;\frac{\sin u}{u},
$$
且积分区间$[0,\pi]$是固定的。由Lebesgue控制收敛定理,
$$
\lim_{n\to\infty}\int_{0}^{x_n}D_n(t)\,dt=\int_{0}^{\pi}\lim_{n\to\infty}D_n(t)\,dt=2\int_{0}^{\pi}\frac{\sin u}{u}\,du=2\Si(\pi).
$$

因此
$$
\lim_{n\to\infty}F_n(x_n)=\;
\frac12\;\bigl(2\,\Si(\pi)\bigr)=\;
\Si(\pi)
$$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2025-5-6 06:13
如何证明数列$$F_n(x_n)=\max_{0<x<\pi}\sum_{k=1}^n\frac{\sin{kx}}{x}\qquad n\ge2$$递增?

Mobile version|Discuz Math Forum

2025-5-31 10:56 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit