Forgot password?
 Register account
View 1424|Reply 4

[函数] 三角函数的最小值

[Copy link]

414

Threads

905

Posts

110K

Credits

Credits
10998

Show all posts

lemondian Posted 2021-2-9 00:08 |Read mode
Last edited by lemondian 2021-2-9 00:20求函数$y=cos2x+\sqrt{2}sin2x-4\sqrt{2}sinx+cosx$的最小值。
好象论坛里有类似的题目,但没找不到

Related collections:

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2021-2-9 02:31
类似题找不到?那可是你自己的帖
forum.php?mod=viewthread&tid=6498
forum.php?mod=viewthread&tid=6867

Let's 继续装逼配方(这个装起来其实比之前的难……

在装之前,先把楼主 永远倾斜的 `sin`、`cos` 给扶正:
\[y=\cos2x+\sqrt2\sin2x-4\sqrt2\sin x+\cos x,\]

\begin{align*}
y+\frac{22}3={}&\frac{7+\sqrt3}4\left( \sin x-\frac{2\sqrt2}3-\frac{\sqrt6-\sqrt2}2\left( \cos x+\frac13 \right) \right)^2\\
&+\frac{7-\sqrt3}4\left( \sin x-\frac{2\sqrt2}3+\frac{\sqrt6+\sqrt2}2\left( \cos x+\frac13 \right) \right)^2,
\end{align*}
所以 `y\geqslant-22/3`,当 `x=\arccos(-1/3)` 时取等。

414

Threads

905

Posts

110K

Credits

Credits
10998

Show all posts

 Author| lemondian Posted 2021-2-9 13:04
回复 2# kuing
这个配方可昨想出来的?
仿佛记得有一帖:是讨论forum.php?mod=viewthread&tid=6498
forum.php?mod=viewthread&tid=6867
这两个的一般情况的,着实找不到。

想了解的是:这种题目是如何搞出来的?
例如:$y=psin2x+qcos2x+rsinx+scosx$何时有最大值,何时有最小值?
系数$p,q,r,s$的正负号与最大,最小值间有关系?
@kuing

414

Threads

905

Posts

110K

Credits

Credits
10998

Show all posts

 Author| lemondian Posted 2021-2-9 22:20
回复 3# lemondian

一页一页地翻,算是找到了这帖:
forum.php?mod=viewthread&tid=76#pid15424

可问题是:这与3#的一般形式又不一样吧?

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2021-2-9 22:23
回复 4# lemondian

就是不一样,所以我才没有把这帖拿出来啊……

Mobile version|Discuz Math Forum

2025-6-4 17:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit