|
Author |
hbghlyj
Posted at 2022-4-30 07:46:56
ericshen.net/handouts/ZG-nuclear.pdf
§9 Introduction to untethered moving points
§9.1 General maps and degree
Definition 9.1 (Moving point)
A moving point is a map
$$
\mathbb{R} \cup\{\infty\} \rightarrow \mathbb{R}^{2} \quad \text { by } \quad t \rightarrow(P(t): Q(t): R(t))
$$
where $P, Q, R$ are polynomials with no common root, and the image of $t=\infty$ is defined by limits / continuity in $\mathbb{R} \mathbb{P}^{2}$.
Definition 9.2 (Moving line)
A moving line is a map
$$
\mathbb{R} \cup\{\infty\} \rightarrow \mathbb{R} \mathbb{P}^{2} \quad \text { by } \quad t \rightarrow(P(t): Q(t): R(t))
$$
This time, however, each $(P(t): Q(t): R(t))$ refers to the line $P(t) x+Q(t) y+R(t) z=0$. (See $\S 1.4$.)
Definition 9.3 (Degree)
The degree of a moving point or line $(P(t): Q(t): R(t))$ is $\max \{\operatorname{deg} P, \operatorname{deg} Q, \operatorname{deg} R\}$. |
|