Forgot password
 Register account
View 143|Reply 1

[几何] 费马点的推广

[Copy link]

3156

Threads

7932

Posts

45

Reputation

Show all posts

hbghlyj posted 2022-11-8 08:48 |Read mode
回复 24# isee 发表于 2014-3-28 10:15
随便点了一上,forumgeom.fau.edu/FG2014volume14/FG201411.pdf,这费马点的推广吧?还是复数证明

整理一下:
定理1. 点$T$对$n$边形$A_1A_2\cdots A_n$的各边张角相等, 即
$$\angle A_{1} T A_{2}=\angle A_{2} T A_{3}=\cdots=\angle A_{n} T A_{1}=\frac{2 \pi}{n}$$
则对任意点 $M$, 有
\[
T A_1+T A_2+\cdots+T A_n \leq M A_1+M A_2+\cdots+M A_n .
\]
证明: 建立复平面, 原点为 $T$, 正实轴为 $T A_1$.
令 $T A_k$ 长度为 $r_k$, 点 $A_k$ 对应的复数为 $r_k \omega^{k-1},(1 \leq k \leq n)$, 其中 \(\omega=\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}\).
设点 $M$ 对应的复数 $z$, 我们有
\[
\begin{aligned}
& M A_1+M A_2+\cdots+M A_n \\
=&\left|z-r_1\right|+\left|z-r_2 \omega\right|+\cdots+\left|z-r_n \omega^{n-1}\right| \\
=&\left|z-r_1\right|+\left|\frac{z}{\omega}-r_2\right|+\cdots+\left|\frac{z}{\omega^{n-1}}-r_n\right| \\
\geq &\left|\left(z-r_1\right)+\left(\frac{z}{\omega}-r_2\right)+\cdots+\left(\frac{z}{\omega^{n-1}}-r_n\right)\right| \\
=&\left|z\left(1+\frac{1}{\omega}+\cdots+\frac{1}{\omega^{n-1}}\right)-\left(r_1+r_2+\cdots+r_n\right)\right| \\
=&\left|-\left(r_1+r_2+\cdots+r_n\right)\right| \\
=& r_1+r_2+\cdots+r_n \\
=& T A_1+T A_2+\cdots+T A_n
\end{aligned}
\]
取等意味着$z,\frac z{\omega},\cdots,\frac{z}{\omega^{n-1}}\in\Bbb R$, 根据幅角, 只能$z=0$, 所以点$T$是唯一的最小值点.

Comment

$A_1A_2\cdots A_n$可以是凹的, 只要$P$对各边张角等于$2π/n$就行  posted 2022-11-8 09:05

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 15:45 GMT+8

Powered by Discuz!

Processed in 0.021604 second(s), 26 queries

× Quick Reply To Top Edit