Forgot password?
 Create new account
View 178|Reply 7

[几何] 星形线切线和椭圆法线成伸缩变换

[Copy link]

22

Threads

70

Posts

607

Credits

Credits
607

Show all posts

lxz2336831534 Posted at 2025-4-10 22:30:02 From the mobile phone |Read mode
Last edited by hbghlyj at yesterday 06:52

今有对称轴为直角坐标轴的圆锥曲线δ,直线BD和直线BC分别过x轴上关于原点对称的两点A,A′且B,C,D三点在δ上,作点C和D的切线交于点E,原点为O点。作答系列问题:
1.若点A为定点,直线BE与X轴,Y轴分别交于H,I二点。证明存在常数λ,μ使得λ(OH)²+μ(OI)²=1;
2.若点A为定点,直线EB,OE,OB的斜率分别为k₁,k₂,k₃;证明(k₁)²/(k₂×k₃)为定值;
3.证明EB的中点在Y轴上。

22

Threads

70

Posts

607

Credits

Credits
607

Show all posts

 Author| lxz2336831534 Posted at 2025-4-10 22:37:50 From the mobile phone
辛苦hbyj管理员为我重新排版一下❤️

22

Threads

70

Posts

607

Credits

Credits
607

Show all posts

 Author| lxz2336831534 Posted at 2025-4-10 23:02:31 From the mobile phone
第三问等价于证明(k₃+k₂)/k₁等于2。

701

Threads

110K

Posts

910K

Credits

Credits
94145
QQ

Show all posts

kuing Posted at 2025-4-11 05:02:14
QQ20250411-045313.png
如图,设点 $B$, $D$ 两处的切线交于 $P$,点 $B$, $C$ 两处的切线交于 $Q$。

当 $A$ 为 $x$ 轴上定点时,则易证 $P$ 在平行于 $y$ 轴的定直线上,同理 $Q$ 也类似,现在 $A$, $A'$ 关于 $y$ 轴对称,因此这两条定直线也对称,设它们为 $x=m$ 和 $x=-m$。

设 $\delta$ 方程为 $ax^2+by^2=1$,设 $B(x_0,y_0)$,则
\[PQ\colon\quad ax_0x+by_0y=1,\]
代入 $x=\pm m$ 可得
\[P\left(m,\frac{1-amx_0}{by_0}\right),~Q\left(-m,\frac{1+amx_0}{by_0}\right),\]
设另一条切线 $PE$ 的方程为
\[y-\frac{1-amx_0}{by_0}=k(x-m),\]
与 $\delta$ 联立令判别式为零可得出
\[(1-am^2)k^2+\frac{2am(1-amx_0)}{by_0}k+(\cdots)=0,\]
设此方程的两根对应两条切线,一条是 $PE$,另一条是 $PB$,因此由韦达得
\[k_{PE}+k_{PB}=-\frac{2am(1-amx_0)}{by_0(1-am^2)},\]
而 $k_{PB}=-\frac{ax_0}{by_0}$,所以
\[k_{PE}=\frac{ax_0}{by_0}-\frac{2am(1-amx_0)}{by_0(1-am^2)}=\frac{a(-2m+x_0+am^2x_0)}{by_0(1-am^2)},\]
同理可得
\[k_{QE}=\frac{a(2m+x_0+am^2x_0)}{by_0(1-am^2)},\]
所以
\begin{align*}
PE\colon&\quad y-\frac{1-amx_0}{by_0}=\frac{a(-2m+x_0+am^2x_0)}{by_0(1-am^2)}(x-m),\\
QE\colon&\quad y-\frac{1+amx_0}{by_0}=\frac{a(2m+x_0+am^2x_0)}{by_0(1-am^2)}(x+m),
\end{align*}
联立即可解出交点 $E$ 的坐标
\[
\led
x_E&=-x_0,\\
y_E&=\frac{(1+am^2)(1-ax_0^2)}{b(1-am^2)y_0},
\endled
\]
由 $ax_0^2+by_0^2=1$,上式化简为
\[
\led
x_E&=-x_0,\\
y_E&=\frac{1+am^2}{1-am^2}y_0,
\endled
\]
有了这么简洁的坐标表达式,接下来应该没啥难度了吧,太晚就不写了,睡睡😪

Comment

凌晨5点睡的觉😃  Posted at 2025-4-11 09:11

22

Threads

70

Posts

607

Credits

Credits
607

Show all posts

 Author| lxz2336831534 Posted at 6 days ago From the mobile phone
Last edited by hbghlyj at 5 days ago今给定一椭圆上有三点B, C, D,作自极三点形 OXY, D, C二点的切线交于点E,BE分别交OY, XY于G, F二点,OX分别交BD, BC于A, A′二点.若有(AA'OX) =-1, 问(BEGF)=?
1000091377.jpg
因为HJ过OX的极点Y所以(KY, KI, KJ, KH)=-1,又因为$K (Y, I, J, H)⩞K (K, I, J, H) ⊼B (K, I, J, H)$
所以(BK, BI, BJ, BH)=-1.又因为(KIOX)=-1且 $(K, I, O, X)⩞B (K, I, J', H')$所以(BK, BI, BJ', BH')=-1
由$\left\{\begin{array}{c}\left(BD, BC, BJ', BH'\right)=-1,(BC, BD, BJ, BH)=-1 \\ (BK, BI, BJ, BH)=-1,\left(BK, BI, BJ', BH'\right)=-1\end{array}\right.$且
(K, I)不关于B透视于(D,C)所以J=J', H=H΄.
所以B, O, J三点共线;B,H,X三点共线,则 (YO, YX, YB, YH)=-1.又因为$Y(0, X, B, H) ⩞ (G, F, B, E)$ 所以(GFBE)=-1. 证毕.

22

Threads

70

Posts

607

Credits

Credits
607

Show all posts

 Author| lxz2336831534 Posted at 6 days ago From the mobile phone
1000091383.png 在上题的基础上增加一问,ID和KC的交点为L,BL分别交OY,OX于M,N二点,试证明M,N调和分割B,L

22

Threads

70

Posts

607

Credits

Credits
607

Show all posts

 Author| lxz2336831534 Posted at 6 days ago From the mobile phone
只需把图中自极三点形OXY射影变换为坐标轴OX,OY,无穷远直线,即得原题中中点和斜率结论。

手机版Mobile version|Leisure Math Forum

2025-4-20 11:45 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list