Last edited by hbghlyj at 5 days ago今给定一椭圆上有三点B, C, D,作自极三点形 OXY, D, C二点的切线交于点E,BE分别交OY, XY于G, F二点,OX分别交BD, BC于A, A′二点.若有(AA'OX) =-1, 问(BEGF)=?
因为HJ过OX的极点Y所以(KY, KI, KJ, KH)=-1,又因为$K (Y, I, J, H)⩞K (K, I, J, H) ⊼B (K, I, J, H)$
所以(BK, BI, BJ, BH)=-1.又因为(KIOX)=-1且 $(K, I, O, X)⩞B (K, I, J', H')$所以(BK, BI, BJ', BH')=-1
由$\left\{\begin{array}{c}\left(BD, BC, BJ', BH'\right)=-1,(BC, BD, BJ, BH)=-1 \\ (BK, BI, BJ, BH)=-1,\left(BK, BI, BJ', BH'\right)=-1\end{array}\right.$且
(K, I)不关于B透视于(D,C)所以J=J', H=H΄.
所以B, O, J三点共线;B,H,X三点共线,则 (YO, YX, YB, YH)=-1.又因为$Y(0, X, B, H) ⩞ (G, F, B, E)$ 所以(GFBE)=-1. 证毕. |