Forgot password?
 Create new account
View 2407|Reply 11

[几何] 椭圆中斜率比值问题

[Copy link]

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

lemondian Posted at 2018-5-31 19:38:35 |Read mode
设椭圆C:$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1(a>b>0)$的左,右顶点为A,B,过右焦点F(c,0)作非水平直线L与椭圆C交于P,Q两点,记直线AP,BQ的斜率为$k1,k2$,求$\dfrac{k1}{k2}$的值。

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2018-5-31 19:43:41
这类结论早就被玩烂了吧……自己做吧……

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

 Author| lemondian Posted at 2018-5-31 21:14:13
回复 2# kuing

又玩烂了?那有类似的题目学习下吧。。。

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

 Author| lemondian Posted at 2018-6-1 09:10:51
终于算出来了!
设$l:x=ty+c,椭圆\dfrac{x^2}{a^2}+\dfrac{y^2}{a^2-c^2}=1,联立消去x,由韦达定理,再由k_1=\dfrac{y_1}{x_1+a}=\dfrac{y_1}{ty_1+c+a}$,
$k_2=\dfrac{y_2}{x_2-a}=\dfrac{y_2}{ty_2+c-a}$,代入化简可得:
$\dfrac{k_1}{k_2}=\dfrac{a-c}{a+c}$.
不过这个做法,运算相当麻烦,不知有没有更简单的做法?

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2018-6-1 13:13:51
简单方法当然是玩“伸缩变换”了。

注意到,当对整个图形沿 `y` 轴拉伸至原来的 `t` 倍时,所有直线的斜率亦都将变为原来的 `t` 倍,`k_1/k_2` 不变,由此可见,只需考虑将椭圆拉伸成圆的情形即可。

如图,连 `PB`,作 `EH\perp PA` 于 `H`:
捕获.PNG

\[\frac{k_{AP}}{k_{BQ}}=\frac{\tan\angle EAP}{\tan\angle EBQ}=\frac{\tan\angle EAP}{\tan\angle EPA}=\frac{HP}{HA}=\frac{EB}{EA},\]
回到原题,`E` 为焦点 `F`,所以 `k_1/k_2=(a-c)/(a+c)`。

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

 Author| lemondian Posted at 2018-6-1 15:12:03
回复 5# kuing

果然NB!
好象双曲线也有此结论,那么能否用“伸缩变换”处理,如何处理呢?

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2018-6-1 15:52:47
回复 6# lemondian

不知道

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2018-6-1 19:05:01
对椭圆(从解析几何角度,双曲线亦如此)如何继续研究的话,会发现
(1)直线PA与直线BQ的交点在定直线(准线)上。
(2)记此交点为T,则直线TA,TB,TF三条直线的斜率为等差数列。

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

力工 Posted at 2018-6-1 19:25:55
与交比应该有一腿,是啥子关系?

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2018-6-1 20:29:43
在论坛上搜索一下应该会有相关帖子

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

 Author| lemondian Posted at 2018-6-1 22:21:46
回复 8# isee


    第二个中,斜率顺序是不是弄错了?

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2018-6-1 23:14:16
回复 11# lemondian

sorry,TF是中项。

手机版Mobile version|Leisure Math Forum

2025-4-21 01:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list