Forgot password?
 Create new account
View 147|Reply 1

[几何] 椭圆中斜率之比 $k_{AD}/k_{BC}$为定值

[Copy link]

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2023-1-28 00:30:18 |Read mode
源自知乎提问



:椭圆 $\frac {x^2}4+y^2=1$ 的左右顶点分别为 A,B,若椭圆的弦 CD 过定点 P(1,0),求证: $k_{AD}/k_{BC}$ 为定值.





设直线 CD $x=my+1$ ,利用 \[\frac{k_{AD}}{k_{BC}}=\frac{k_{AD}\cdot k_{BD}}{k_{BC}\cdot k_{BD}}=\frac{-1/4}{k_{BC}\cdot k_{BD}},\] 沟通了韦达定理.

下面另寻出路,一般化:对任意椭圆的参数方程 $(a\cos\theta,b\sin\theta)$ ,设 C,D 的参数分别为 $\theta_1,\,\theta_2$ ,并设 CD 直线过定点 $P(t,0)$ ,则由 $\overrightarrow{CP}=\lambda \overrightarrow{PD}$ 有 \begin{gather*}
(t-a\cos\theta_1)\cdot b\sin\theta_2=(a\cos\theta_2-t)\cdot (-b\sin\theta_1),\\[1ex]
t(\sin\theta_1-\sin\theta_2)=a\sin(\theta_1-\theta_2),\\[1ex]
t\cdot 2\cos\frac{\theta_1+\theta_2}2\sin\frac{\theta_1-\theta_2}2=2a\sin\frac{\theta_1-\theta_2}2\cos\frac{\theta_1-\theta_2}2,\\[1ex]
\frac{t}a=\frac{\cos\frac{\theta_1-\theta_2}2}{\cos\frac{\theta_1+\theta_2}2},\\[1ex]
\frac{t-a}{t+a}=\frac{\cos\frac{\theta_1-\theta_2}2-\cos\frac{\theta_1+\theta_2}2}{\cos\frac{\theta_1-\theta_2}2+\cos\frac{\theta_1+\theta_2}2}=\frac{-2\sin\frac{\theta_1}2\sin\frac{-\theta_2}2}{2\cos\frac{\theta_1}2\cos\frac{-\theta_2}2},\\[1ex]
\color{blue}{\tan\frac{\theta_1}2\tan\frac{\theta_2}2=\frac{t-a}{t+a}}.
\end{gather*} 此式(椭圆参数方程时)解决韦定定理难以处理的斜率问题时是一把好手.

如这里,令 $t=1$ , $(a=2,\,b=1)$ ,则 \[\tan\frac{\theta_1}2\tan\frac{\theta_2}2=\frac{1-2}{1+2}=-\frac 13.\] 从而 \[\frac{k_{AD}}{k_{BC}}=\frac{\sin\theta_2}{2(1+\cos\theta_2)}\cdot\frac{-2(1-\cos\theta_2)}{\sin\theta_1}=\tan\frac{\theta_2}2\tan\frac{\theta_1}2=\frac13.\]
isee=freeMaths@知乎

701

Threads

110K

Posts

910K

Credits

Credits
94167
QQ

Show all posts

kuing Posted at 2023-1-28 01:17:27
kuing.cjhb.site/forum.php?mod=viewthread&tid=5384

PS、“斜率之比”之类是不错的 tag 😉 我加上了

手机版Mobile version|Leisure Math Forum

2025-4-20 22:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list