|
Last edited by hbghlyj at 2025-4-10 19:44:05%20ellipse%20%5Bx%20radius=2,%20y%20radius=1%5D;%0A%20%20%5Cdraw(-2,0)--(2,0);%0A%20%20%5Cfilldraw%5Bblue%5D%20(2,0)%20circle%20(1pt)%20node%5Bright%5D%20%7B%24P(2,0)%24%7D;%0A%20%20%5Cfilldraw%5Bblue%5D%20(-2,0)%20circle%20(1pt)%20node%5Bleft%5D%20%7B%24Q%24%7D;%0A%20%20%0A%20%20%25%20Draw%20ellipse%20E_2:%20center%20at%20(1,0),%20horizontal%20semiaxis%20=%200.5,%20vertical%20semiaxis%20=%202.%0A%20%20%5Cdraw%5Bred,%20thick%5D%20(1,0)%20ellipse%20%5Bx%20radius=0.5,%20y%20radius=2%5D;%0A%20%20%0A%20%20%25%20Mark%20points%20M%20and%20N%20on%20the%20x-axis%20where%20E_2%20meets%20it.%0A%20%20%5Cfilldraw%5Bred%5D%20(0.5,0)%20circle%20(1pt)%20node%5Bleft%5D%20%7B%24M%24%7D;%0A%20%20%5Cfilldraw%5Bred%5D%20(1.5,0)%20circle%20(1pt)%20node%5Bright%5D%20%7B%24N%24%7D;%0A%20%20%0A%20%20%25%20Approximate%20intersection%20points%20between%20E_1%20and%20E_2.%0A%20%20%25%20They%20are%20found%20by%20solving%20the%20system:%0A%20%20%25%20%20%20E_1:%20%20%20%20x%5E2%2F4%20+%20y%5E2%20=%201,%0A%20%20%25%20%20%20E_2:%20%20%20%20((x-1)%5E2)%2F(0.25)%20+%20(y%5E2)%2F4%20=%201.%0A%20%20%25%0A%20%20%25%20A%20rough%20computation%20gives%20two%20x-values:%0A%20%20%25%20%20%20%20x%20%E2%89%88%201.471%20and%20x%20%E2%89%88%200.561.%0A%20%20%25%20Substituting%20into%20E_1%20yields%20the%20corresponding%20y-values:%0A%20%20%25%20%20%20For%20x=1.471,%20y%20%E2%89%88%20%C2%B10.678.%0A%20%20%25%20%20%20For%20x=0.561,%20y%20%E2%89%88%20%C2%B10.960.%0A%20%20%5Ccoordinate(B)at(1.471,0.678);%0A%20%20%5Cfilldraw(B)%20circle%20(1pt)%20node%5Babove%20right%5D%20%7B%24B%24%7D;%0A%20%20%5Ccoordinate(D)at(1.471,-0.678);%0A%20%20%5Cfilldraw(D)%20circle%20(1pt)%20node%5Bbelow%20right%5D%20%7B%24D%24%7D;%0A%20%20%5Ccoordinate(A)at(0.561,0.960);%0A%20%20%5Cfilldraw(A)%20circle%20(1pt)%20node%5Babove%20left%5D%20%7B%24A%24%7D;%0A%20%20%5Ccoordinate(C)at(0.561,-0.960);%0A%20%20%5Cfilldraw(C)%20circle%20(1pt)%20node%5Bbelow%20left%5D%20%7B%24C%24%7D;%0A%20%20%5Ccoordinate(x0)at(intersection%20of%20A--D%20and%20C--B);%0A%20%20%5Cfilldraw(x0)circle%20(1pt)%20node%5Bbelow%5D%20%7B%24x_0%24%7D;%0A%20%20%5Cdraw(A)--(D);%0A%5Cend%7Btikzpicture%7D)
设 $E_2$ 和 $E_1$ 有四个交点,根据笛沙格对合定理,这四个点所确立的二次曲线束被 $P Q$ 所截得点列属于同一对合。由 $Q(-2,0) \rightarrow P(2,0) \quad M\left(\frac{1}{2}, 0\right) \rightarrow N\left(\frac{3}{2}, 0\right)$可知该对合变换为 $f(x)=\frac{19 x-32}{8 x-19}$由两弦斜率之积 $k_1 k_2$ 和点 $P\left(x_P, y_P\right)$ 所对张弦定点 $(x_0,y_0)$ 的关系:
\[\tag{*}\label1
a^2\left(\frac{y_0 y_P}{b^2}-\frac{x_0 x_P}{a^2}+1\right) k_1 k_2+\left(y_P x_0+x_P y_0\right)\left(k_1+k_2\right)+b^2\left(\frac{x_0 y_P}{a^2}-\frac{y_0 y_P}{b^2}+1\right)=0
\]
对比并代入本题数据得 $k_1 k_2=\frac{1}{4}+\frac{1}{x_0-2}$.
则
\[
\begin{aligned}
k_1 k_2 k_3 k_4 & =\left(\frac{1}{4}+\frac{1}{x_0-2}\right)\left(\frac{1}{4}+\frac{1}{f\left(x_0\right)-2}\right) \\
& =\left(\frac{1}{4}+\frac{1}{x_0-2}\right)\left(\frac{1}{4}+\frac{1}{\frac{19 x_0-32}{8 x_0-19}-2}\right)=\frac{35}{48}
\end{aligned}
\]注:$E_2$ 由 $A, B, C, D, M, N$ 6点确定
若固定 $A B C D$ 中任两点,另外两点所连直线由笛沙格对合定理可知过定点 $f\left(x_0\right)$,
若不固定则点$\left(x_0, 0\right),\left(f\left(x_0\right), 0\right)$仍满足\eqref{1}式斜率关系。 |
|