|
1+1=?
posted 2025-4-10 00:36
from mobile
Last edited by hbghlyj 2025-4-10 19:44
设 $E_2$ 和 $E_1$ 有四个交点,根据笛沙格对合定理,这四个点所确立的二次曲线束被 $P Q$ 所截得点列属于同一对合。由 $Q(-2,0) \rightarrow P(2,0) \quad M\left(\frac{1}{2}, 0\right) \rightarrow N\left(\frac{3}{2}, 0\right)$可知该对合变换为 $f(x)=\frac{19 x-32}{8 x-19}$由两弦斜率之积 $k_1 k_2$ 和点 $P\left(x_P, y_P\right)$ 所对张弦定点 $(x_0,y_0)$ 的关系:
\[\tag{*}\label1
a^2\left(\frac{y_0 y_P}{b^2}-\frac{x_0 x_P}{a^2}+1\right) k_1 k_2+\left(y_P x_0+x_P y_0\right)\left(k_1+k_2\right)+b^2\left(\frac{x_0 y_P}{a^2}-\frac{y_0 y_P}{b^2}+1\right)=0
\]
对比并代入本题数据得 $k_1 k_2=\frac{1}{4}+\frac{1}{x_0-2}$.
则
\[
\begin{aligned}
k_1 k_2 k_3 k_4 & =\left(\frac{1}{4}+\frac{1}{x_0-2}\right)\left(\frac{1}{4}+\frac{1}{f\left(x_0\right)-2}\right) \\
& =\left(\frac{1}{4}+\frac{1}{x_0-2}\right)\left(\frac{1}{4}+\frac{1}{\frac{19 x_0-32}{8 x_0-19}-2}\right)=\frac{35}{48}
\end{aligned}
\]注:$E_2$ 由 $A, B, C, D, M, N$ 6点确定
若固定 $A B C D$ 中任两点,另外两点所连直线由笛沙格对合定理可知过定点 $f\left(x_0\right)$,
若不固定则点$\left(x_0, 0\right),\left(f\left(x_0\right), 0\right)$仍满足\eqref{1}式斜率关系。 |
|