Forgot password?
 Create new account
View 143|Reply 4

[几何] 求椭圆离心率

[Copy link]

166

Threads

385

Posts

3327

Credits

Credits
3327

Show all posts

lrh2006 Posted at 2022-11-26 23:19:31 |Read mode
Last edited by lrh2006 at 2022-11-26 23:33:00设F是椭圆$ \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1(a>b>0) $的右焦点,O为坐标原点,过F做斜率为$ \sqrt{15} $的直线l交椭圆于A,B两点(A点在x轴上方),过O作AB的垂线,垂足为H,且|HB|=|HF|,则该椭圆的离心率是多少?
请教大咖们,谢谢!

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2022-11-26 23:28:52
F 是到底是右焦点?还是左焦点.
isee=freeMaths@知乎

166

Threads

385

Posts

3327

Credits

Credits
3327

Show all posts

 Author| lrh2006 Posted at 2022-11-26 23:34:16
Last edited by lrh2006 at 2022-11-26 23:45:00
isee 发表于 2022-11-26 23:28
F 是到底是右焦点?还是左焦点.

晕,竟然打错
已经在题目中改过来了

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2022-11-27 19:30:08
Last edited by isee at 2022-11-27 23:14:00设 $l$ 的倾斜角为 $\theta$,则依题知 $\cos\theta=\frac 14$, 设点 $B(x,y)$ 则\[x=c+|BF|\cos(\pi-\theta)=c-|BF|\cos\theta,\]
另一方面,由椭圆第二定义,得焦半径长\[|BF|=a-ex,\]
这两式联立消 $x$ 解得\[|BF|=\frac{b^2}{a-c \cos\theta}.\]
在 $\text{Rt}\triangle OHF$ 中,有\[\frac 12|BF|=|HF|=|OF|\cos\theta=c\cos\theta,\]
从而\[2c\cos\theta=BF=\frac{b^2}{a-c \cos\theta},\]
将 $\cos\theta=\frac 14,\;b^2=a^2-c^2$ 代入,
\[\frac c2=\frac{a^2-c^2}{a-\frac c4},\]
求得\[e=\frac{2\sqrt {15}-2}7.\]
isee=freeMaths@知乎

166

Threads

385

Posts

3327

Credits

Credits
3327

Show all posts

 Author| lrh2006 Posted at 2022-11-28 13:41:23
isee 发表于 2022-11-27 19:30
设 $l$ 的倾斜角为 $\theta$,则依题知 $\cos\theta=\frac 14$, 设点 $B(x,y)$ 则\[x=c+|BF|\cos(\pi-\thet ...
明白了,谢谢老师!

手机版Mobile version|Leisure Math Forum

2025-4-20 22:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list