Forgot password?
 Create new account
View 136|Reply 0

空间中圆锥曲线的切向量

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2022-9-30 00:01:57 |Read mode
Last edited by 青青子衿 at 2022-10-2 01:21:00空间直角坐标系中,圆$\varGamma$过原点$O(0,0,0)$和定点$P(a,b,c)$,曲线$\varGamma$在原点的切线方向为$(X\colon\,\!Y\colon\,\!Z)$,则定点$P(a,b,c)$处的切线方向为$\left(U\colon\,\!V\colon\,\!W\right)$,其中
\begin{align*}
\left\{
\begin{split}
U&=\left(a^2-b^2-c^2\right)X+2a(bY+cZ)\\
V&=\left(b^2-a^2-c^2\right)Y+2b(aX+cZ)\\
W&=\left(c^2-a^2-b^2\right)Z+2c(aX+bY)
\end{split}\right.
\end{align*}
而且满足$U^2+V^2+W^2=\left(a^2+b^2+c^2\right)^2 \left(X^2+Y^2+Z^2\right)$.
$UX+VY+WZ=2 (a X+b Y+c Z)^2-\left(a^2+b^2+c^2\right) \left(X^2+Y^2+Z^2\right)$
若抛物线上动点S的切线l,抛物线顶点T切线关于S的垂足为H,切线l过线段HT的二分之一处。
那么,抛物线上的一般位置呢?
如果给定离心率,其他圆锥曲线的切线方向呢?

手机版Mobile version|Leisure Math Forum

2025-4-21 01:32 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list