Forgot password?
 Create new account
View 227|Reply 5

[几何] 圆曲内三角形面积的结论很娇艳

[Copy link]

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

力工 Posted at 2023-11-1 10:54:49 |Read mode
Last edited by hbghlyj at 2025-4-10 20:31:53【题】已知四边形 $A B C D$ 的各顶点都在椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 上,且直线 $A B$ 与 $C D$ 的斜率之和为 0 .
(1)证明:$A, B, C, D$ 四点共圆;
(2)记 $O$ 为坐标原点,$\triangle A B C, \triangle B C D, \triangle C A D, \triangle D A B$ 的面积分别为 $S_1, S_2, S_3, S_4$ ,
证明:$O A^2 \cdot S_2+O C^2 \cdot S_4=O B^2 \cdot S_3+O D^2 \cdot S_1$ .
(1)是常见结论
想问(2)

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2023-11-1 14:36:05
Last edited by kuing at 2023-11-5 21:58:00第(2)问其实已经和椭圆没什么关系了,我猜想有更一般命题:

任意圆内接四边形 `ABCD` 及平面上任意点 `P`,恒有
\[PA^2\cdot\S{BCD}+PC^2\cdot\S{ABD}=PB^2\cdot\S{ACD}+PD^2\cdot\S{ABB}\]

几何画板验证:
QQ截图20231101143150.png

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2023-11-1 15:53:15
Last edited by kuing at 2023-11-5 21:55:00咳,突然发现,这不就是四点共圆的坐标行列式判定么……

不妨建系使 `P` 为原点,设 `ABCD` 四点的坐标为 `(x_i,y_i)`(`i=1`, `2`, `3`, `4`),则由四点共圆有
\begin{align*}
&
\begin{vmatrix}
x_1^2+y_1^2 & x_1 & y_1 & 1 \\
x_2^2+y_2^2 & x_2 & y_2 & 1 \\
x_3^2+y_3^2 & x_3 & y_3 & 1 \\
x_4^2+y_4^2 & x_4 & y_4 & 1
\end{vmatrix}
=0\\
\iff{}&
\begin{vmatrix}
PA^2 & x_1 & y_1 & 1 \\
PB^2 & x_2 & y_2 & 1 \\
PC^2 & x_3 & y_3 & 1 \\
PD^2 & x_4 & y_4 & 1
\end{vmatrix}
=0\\
\iff{}&
PA^2
\begin{vmatrix}
x_2 & y_2 & 1 \\
x_3 & y_3 & 1 \\
x_4 & y_4 & 1
\end{vmatrix}
-PB^2
\begin{vmatrix}
x_1 & y_1 & 1 \\
x_3 & y_3 & 1 \\
x_4 & y_4 & 1
\end{vmatrix}
+PC^2
\begin{vmatrix}
x_1 & y_1 & 1 \\
x_2 & y_2 & 1 \\
x_4 & y_4 & 1
\end{vmatrix}
-PD^2
\begin{vmatrix}
x_1 & y_1 & 1 \\
x_2 & y_2 & 1 \\
x_3 & y_3 & 1
\end{vmatrix}
=0,
\end{align*}
对于上式的四个行列式,它们的绝对值都为相应三角形面积的两倍,至于正负,由于下标顺序 `(2,3,4)`, `(1,3,4)`, `(1,2,4)`, `(1,2,3)` 对应的点的时针方向必定是相同的,因此它们同为正或同为负,两种情况都得到
\[PA^2\cdot\S{BCD}-PB^2\cdot\S{ACD}+PC^2\cdot\S{ABD}-PD^2\cdot\S{ABC}=0.\]

Comment

看到面积我就在想叉积  Posted at 2023-11-1 16:05

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2023-11-2 20:18:21
Last edited by hbghlyj at 2023-11-5 15:06:00推广:五点A,B,C,D,E共球,PA*Volume(Pyramid(BCDE))-PB*Volume(Pyramid(CDEA))+PC*Volume(Pyramid(DEAB))-PD*Volume(Pyramid(EABC))+PE*Volume(Pyramid(ABCD))=0
output.gif

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2023-11-2 21:55:02
Last edited by kuing at 2023-11-5 22:53:00回楼上:意料之中

手机版Mobile version|Leisure Math Forum

2025-4-21 19:15 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list