Forgot password?
 Register account
View 358|Reply 5

[几何] 请教一下此题是否存在几何背景

[Copy link]

48

Threads

15

Posts

685

Credits

Credits
685

Show all posts

snowblink Posted 2023-12-27 16:34 |Read mode
如题
QMW`TQUUG6D4[K[~DSIZDR5.png

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2023-12-27 21:46

Comment

谢谢ku  Posted 2023-12-29 19:26

20

Threads

37

Posts

355

Credits

Credits
355

Show all posts

12673zf Posted 2023-12-28 10:26
kuing 发表于 2023-12-27 21:46
背景大概是一道经典初中题,见:
https://kuingggg.github.io/5d6d/thread-1001-1-5.html
http://kuing.inf ...
想问一下第一个帖子里,你的解答,“易证颜色相同的三角形相似”,这个怎么证,想了半天没想到,以及AB平行PM?

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2023-12-28 14:24
Last edited by kuing 2023-12-28 14:30
12673zf 发表于 2023-12-28 10:26
想问一下第一个帖子里,你的解答,“易证颜色相同的三角形相似”,这个怎么证,想了半天没想到,以及AB平行PM?

由 `\angle ODQ=\angle OPQ=90\du` 得 $ODPQ$ 四点共圆,故 $\angle CDP=\angle QOP=\angle AON$,又 $\angle DCP=\angle OAN$,故 $\triangle PCD\sim\triangle NAO$,得到 $ON:DP=OA:DC$。

同理可证 $\triangle PBD\sim\triangle MAO$,得到 $OM:DP=OA:DB$,所以 $OM=ON$。

有了 $OM=ON$ 自然得到 `PMAN` 是平行四边形。

将整个图形压缩成椭圆,平行四边形仍然是平行四边形。

20

Threads

37

Posts

355

Credits

Credits
355

Show all posts

12673zf Posted 2023-12-28 16:43
kuing 发表于 2023-12-28 14:24
由 `\angle ODQ=\angle OPQ=90\du` 得 $ODPQ$ 四点共圆,故 $\angle CDP=\angle QOP=\angle AON$,又 $\ ...
非常感谢。太久没做几何题,脑子已经锈掉了,一开始那个90°都想了一下为什么😂

Mobile version|Discuz Math Forum

2025-6-5 07:53 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit