Forgot password?
 Register account
View 258|Reply 3

[几何] 两个三角形的3!=6个仿射中心共锥线

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-16 19:09 |Read mode
$\triangle ABC$与$\triangle DEF$的仿射中心、
$\triangle ACB$与$\triangle DEF$的仿射中心、
$\triangle BAC$与$\triangle DEF$的仿射中心、
$\triangle BCA$与$\triangle DEF$的仿射中心、
$\triangle CAB$与$\triangle DEF$的仿射中心、
$\triangle CBA$与$\triangle DEF$的仿射中心共锥线.

相关:一正方形的各边和一线段的相似中心

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-16 19:35
不妨设$a=0,b=1,c=i$.
使用2D仿射变换的复数公式解出仿射中心.
这帖得到6点共锥线的条件${[135]\over[125]}{[245]\over[345]}{[126]\over[136]}{[346]\over[246]}=1$
  1. In[]:= a=0;b=1;c=I;
  2. AffineCenter[{a_,b_,c_},{d_,e_,f_}]:=Simplify[z/.Solve[{p (a-z)+q (ac-zc)+z==d,qc (a-z)+pc (ac-zc)+zc==dc,p (b-z)+q (bc-zc)+z==e,qc (b-z)+pc (bc-zc)+zc==ec,p (c-z)+q (cc-zc)+z==f,qc (c-z)+pc (cc-zc)+zc==fc},{z,p,q,zc,pc,qc}][[1]]]/.{ac->Conjugate[a],bc->Conjugate[b],cc->Conjugate[c],dc->Conjugate[d],ec->Conjugate[e],fc->Conjugate[f]};
  3. list=AffineCenter[#,{d,e,f}]&/@Permutations[{a,b,c}];
  4. bracket[i_,j_,k_]:=Det[{#,Conjugate[#],1}&/@list[[{i,j,k}]]];
  5. Simplify[Times@@Simplify/@{bracket[1,3,5]/bracket[1,2,5],bracket[2,4,5]/bracket[3,4,5],bracket[1,2,6]/bracket[1,3,6],bracket[3,4,6]/bracket[2,4,6]}]
  6. Out[]= 1
Copy the Code
证明完毕
Nine_point_conic.svg.png

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-16 19:56
这帖的结论: 3个三角形两两作的这种锥线的共轴
如何证明

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-16 23:33
两个四边形的4!=24个射影中心有什么关系

Mobile version|Discuz Math Forum

2025-5-31 10:37 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit