Forgot password
 Register account
View 343|Reply 5

[数论] $2x^2+3xy-4y^2=2$

[Copy link]

3211

Threads

7832

Posts

52

Reputation

Show all posts

hbghlyj posted 2024-2-29 07:09 |Read mode
如何解 $2x^2+3xy-4y^2=2,(x,y\inZ)$

$(x,y)=(-6,-7)$
$(x,y)=(1,0)$

驗證:sagecell(在Pari文檔中qfbsolveoeis

70

Threads

442

Posts

19

Reputation

Show all posts

hejoseph posted 2024-2-29 08:55
Last edited by hejoseph 2024-2-29 09:05$2x^2+3xy-4y^2=2$ 等价于 $(4x+3y)^2-41y^2=16$,$t^2-41y^2=16$ 是广义 Pell 方程,其通解有三类
\begin{align*}
&t+y\sqrt{41}=\pm 4(2049+320\sqrt{41})^k\\
&t+y\sqrt{41}=\pm(45+7\sqrt{41})(2049+320\sqrt{41})^k\\
&t+y\sqrt{41}=\pm(365+57\sqrt{41})(2049+320\sqrt{41})^k\\
\end{align*}
其中 $k$ 为任意整数,简单讨论可得 $2x^2+3xy-4y^2=2$ 的通解为
\begin{align*}
&4x+3y+y\sqrt{41}=\pm 4(2049+320\sqrt{41})^k\\
&4x+3y+y\sqrt{41}=\pm(45+7\sqrt{41})(2049+320\sqrt{41})^k
\end{align*}
通解 $4x+3y+y\sqrt{41}=4(2049+320\sqrt{41})^k$ 取 $k=0$ 便得解 $(1,0)$。
通解 $4x+3y+y\sqrt{41}=-(45+7\sqrt{41})(2049+320\sqrt{41})^k$ 取 $k=0$ 便得解 $(-6,-7)$,取 $k=-1$ 便得除了上述解外绝对值最小的解 $(-134,57)$。

3211

Threads

7832

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2024-10-3 16:31
sympygamma.com/input/?i=diophantine(2*x**2+3*x*y-4*y**2-2)
x y
\[\frac{\left(-45 + 7 \sqrt{41}\right) \left(2049 - 320 \sqrt{41}\right)^{t}}{8} + \frac{\left(-45 - 7 \sqrt{41}\right) \left(320 \sqrt{41} + 2049\right)^{t}}{8} - \frac{3 \sqrt{41} \left(- \left(-45 + 7 \sqrt{41}\right) \left(2049 - 320 \sqrt{41}\right)^{t} + \left(-45 - 7 \sqrt{41}\right) \left(320 \sqrt{41} + 2049\right)^{t}\right)}{328}\] \[\frac{\sqrt{41} \left(- \left(-45 + 7 \sqrt{41}\right) \left(2049 - 320 \sqrt{41}\right)^{t} + \left(-45 - 7 \sqrt{41}\right) \left(320 \sqrt{41} + 2049\right)^{t}\right)}{82}\]
\[\frac{\left(45 - 7 \sqrt{41}\right) \left(2049 - 320 \sqrt{41}\right)^{t}}{8} + \frac{\left(7 \sqrt{41} + 45\right) \left(320 \sqrt{41} + 2049\right)^{t}}{8} - \frac{3 \sqrt{41} \left(- \left(45 - 7 \sqrt{41}\right) \left(2049 - 320 \sqrt{41}\right)^{t} + \left(7 \sqrt{41} + 45\right) \left(320 \sqrt{41} + 2049\right)^{t}\right)}{328}\] \[\frac{\sqrt{41} \left(- \left(45 - 7 \sqrt{41}\right) \left(2049 - 320 \sqrt{41}\right)^{t} + \left(7 \sqrt{41} + 45\right) \left(320 \sqrt{41} + 2049\right)^{t}\right)}{82}\]
\[\frac{\left(-8196 + 1280 \sqrt{41}\right) \left(2049 - 320 \sqrt{41}\right)^{t}}{8} + \frac{\left(-8196 - 1280 \sqrt{41}\right) \left(320 \sqrt{41} + 2049\right)^{t}}{8} - \frac{3 \sqrt{41} \left(- \left(-8196 + 1280 \sqrt{41}\right) \left(2049 - 320 \sqrt{41}\right)^{t} + \left(-8196 - 1280 \sqrt{41}\right) \left(320 \sqrt{41} + 2049\right)^{t}\right)}{328}\] \[\frac{\sqrt{41} \left(- \left(-8196 + 1280 \sqrt{41}\right) \left(2049 - 320 \sqrt{41}\right)^{t} + \left(-8196 - 1280 \sqrt{41}\right) \left(320 \sqrt{41} + 2049\right)^{t}\right)}{82}\]
\[\frac{\left(2049 - 320 \sqrt{41}\right)^{t} \left(8196 - 1280 \sqrt{41}\right)}{8} + \frac{\left(320 \sqrt{41} + 2049\right)^{t} \left(1280 \sqrt{41} + 8196\right)}{8} - \frac{3 \sqrt{41} \left(- \left(2049 - 320 \sqrt{41}\right)^{t} \left(8196 - 1280 \sqrt{41}\right) + \left(320 \sqrt{41} + 2049\right)^{t} \left(1280 \sqrt{41} + 8196\right)\right)}{328}\] \[\frac{\sqrt{41} \left(- \left(2049 - 320 \sqrt{41}\right)^{t} \left(8196 - 1280 \sqrt{41}\right) + \left(320 \sqrt{41} + 2049\right)^{t} \left(1280 \sqrt{41} + 8196\right)\right)}{82}\]

3211

Threads

7832

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2024-10-3 16:38
这个是怎么算出来的呢?

3211

Threads

7832

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2024-10-3 19:13
alpertron.com.ar/QUAD.HTM

2 ⁢x² + 3 ⁢x⁢y - 4 ⁢y² - 2 ⁢ = 0

The discriminant is D = b² − 4⁢ac = 41

2 X² + 3 XY − 4 ⁢Y² = 2 (1)

The algorithm requires that the coefficient of X² and the right hand side are coprime. This does not happen, so we have to find a value of m such that applying one of the unimodular transformations

  • X = mU + (m−1)V, Y = U + V
  • X = U + V, Y = (m−1)U + mV

the coefficient of U² and the right hand side are coprime. This coefficient equals 2 m² + 3 m − 4 in the first case and -4 (m − 1)² + 3 (m − 1) + 2 in the second case.

We will use the first unimodular transformation with m = 1: X = U, Y = U + V (2)

Using (2), the equation (1) converts to:

U² − 5 UV − 4 ⁢V² = 2 (3)

We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

The different moduli are divisors of the right hand side, so we only have to factor it once.

2 = 2

Searching for solutions U and V coprime.

We have to solve: T² − 5 T − 4 ≡ 0 (mod 2 = 2)

Solutions modulo 2: 0 and 1

  1. T = 0
  2. The transformation U = - 2 ⁢k (4) converts U² − 5 UV − 4 ⁢V² = 2 to PV² + QVk + Rk² = 1 (5)

    where: P = (aT² + bT + c) / n = -2, Q = −(2⁢aT + b) = 5, R = an = 2

    The continued fraction expansion of (Q + D) / (2R) = (5 + 41) / 4 is:

    2+ // 1, 5, 1, 2, 2// (6)

    Solution of (5) found using the convergent V / (−k) = 1 / 3 of (6)

    U = 6, V = 1

    From (2):

    X = 6, Y = 7

    x = 6
    y = 7

    U = -6, V = -1

    From (2):

    X = -6, Y = -7

    x = -6
    y = -7

    The continued fraction expansion of (−Q + D) / (−2R) = (-5 + 41) / (-4) is:

    -1+ // 1, 1, 1, 5, 1, 2, 2// (7)

    x = 6
    y = 7

    x = -6
    y = -7

  3. T = 1
  4. The transformation U =  V - 2 ⁢k (8) converts U² − 5 UV − 4 ⁢V² = 2 to PV² + QVk + Rk² = 1 (9)

    where: P = (aT² + bT + c) / n = -4, Q = −(2⁢aT + b) = 3, R = an = 2

    The continued fraction expansion of (Q + D) / (2R) = (3 + 41) / 4 is:

    2+ // 2, 1, 5, 1, 2// (10)

    The continued fraction expansion of (−Q + D) / (−2R) = (-3 + 41) / (-4) is:

    -1+ // 6, 1, 2, 2, 1, 5// (11)

    Solution of (9) found using the convergent V / (−k) = 1 / -1 of (11)

    U = -1, V = 1

    From (2):

    X = -1, Y = 0

    x = -1
    y = 0

    U = 1, V = -1

    From (2):

    X = 1, Y = 0

    x = 1
    y = 0

    x = -1
    y = 0

    x = 1
    y = 0

Recursive solutions:

xn+1 = 1089 ⁢xn + 2560 ⁢yn
yn+1 = 1280 ⁢xn + 3009 ⁢yn

and also:

xn+1 = 3009 ⁢xn - 2560 ⁢yn
yn+1 = - 1280 ⁢xn + 1089 ⁢yn

70

Threads

442

Posts

19

Reputation

Show all posts

hejoseph posted 2025-1-13 09:22
hbghlyj 发表于 2024-10-3 16:38
这个是怎么算出来的呢?
找《谈谈不定方程》这本书,里面有具体解法。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 06:03 GMT+8

Powered by Discuz!

Processed in 0.017933 seconds, 36 queries