Forgot password?
 Register account
View 365|Reply 5

[数论] $2x^2+3xy-4y^2=2$

[Copy link]

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

hbghlyj Posted 2024-2-29 07:09 |Read mode
如何解 $2x^2+3xy-4y^2=2,(x,y\inZ)$

$(x,y)=(-6,-7)$
$(x,y)=(1,0)$

驗證:sagecell(在Pari文檔中qfbsolveoeis

70

Threads

440

Posts

4416

Credits

Credits
4416

Show all posts

hejoseph Posted 2024-2-29 08:55
Last edited by hejoseph 2024-2-29 09:05$2x^2+3xy-4y^2=2$ 等价于 $(4x+3y)^2-41y^2=16$,$t^2-41y^2=16$ 是广义 Pell 方程,其通解有三类
\begin{align*}
&t+y\sqrt{41}=\pm 4(2049+320\sqrt{41})^k\\
&t+y\sqrt{41}=\pm(45+7\sqrt{41})(2049+320\sqrt{41})^k\\
&t+y\sqrt{41}=\pm(365+57\sqrt{41})(2049+320\sqrt{41})^k\\
\end{align*}
其中 $k$ 为任意整数,简单讨论可得 $2x^2+3xy-4y^2=2$ 的通解为
\begin{align*}
&4x+3y+y\sqrt{41}=\pm 4(2049+320\sqrt{41})^k\\
&4x+3y+y\sqrt{41}=\pm(45+7\sqrt{41})(2049+320\sqrt{41})^k
\end{align*}
通解 $4x+3y+y\sqrt{41}=4(2049+320\sqrt{41})^k$ 取 $k=0$ 便得解 $(1,0)$。
通解 $4x+3y+y\sqrt{41}=-(45+7\sqrt{41})(2049+320\sqrt{41})^k$ 取 $k=0$ 便得解 $(-6,-7)$,取 $k=-1$ 便得除了上述解外绝对值最小的解 $(-134,57)$。

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2024-10-3 16:31
sympygamma.com/input/?i=diophantine(2*x**2+3*x*y-4*y**2-2)
x y
\[\frac{\left(-45 + 7 \sqrt{41}\right) \left(2049 - 320 \sqrt{41}\right)^{t}}{8} + \frac{\left(-45 - 7 \sqrt{41}\right) \left(320 \sqrt{41} + 2049\right)^{t}}{8} - \frac{3 \sqrt{41} \left(- \left(-45 + 7 \sqrt{41}\right) \left(2049 - 320 \sqrt{41}\right)^{t} + \left(-45 - 7 \sqrt{41}\right) \left(320 \sqrt{41} + 2049\right)^{t}\right)}{328}\] \[\frac{\sqrt{41} \left(- \left(-45 + 7 \sqrt{41}\right) \left(2049 - 320 \sqrt{41}\right)^{t} + \left(-45 - 7 \sqrt{41}\right) \left(320 \sqrt{41} + 2049\right)^{t}\right)}{82}\]
\[\frac{\left(45 - 7 \sqrt{41}\right) \left(2049 - 320 \sqrt{41}\right)^{t}}{8} + \frac{\left(7 \sqrt{41} + 45\right) \left(320 \sqrt{41} + 2049\right)^{t}}{8} - \frac{3 \sqrt{41} \left(- \left(45 - 7 \sqrt{41}\right) \left(2049 - 320 \sqrt{41}\right)^{t} + \left(7 \sqrt{41} + 45\right) \left(320 \sqrt{41} + 2049\right)^{t}\right)}{328}\] \[\frac{\sqrt{41} \left(- \left(45 - 7 \sqrt{41}\right) \left(2049 - 320 \sqrt{41}\right)^{t} + \left(7 \sqrt{41} + 45\right) \left(320 \sqrt{41} + 2049\right)^{t}\right)}{82}\]
\[\frac{\left(-8196 + 1280 \sqrt{41}\right) \left(2049 - 320 \sqrt{41}\right)^{t}}{8} + \frac{\left(-8196 - 1280 \sqrt{41}\right) \left(320 \sqrt{41} + 2049\right)^{t}}{8} - \frac{3 \sqrt{41} \left(- \left(-8196 + 1280 \sqrt{41}\right) \left(2049 - 320 \sqrt{41}\right)^{t} + \left(-8196 - 1280 \sqrt{41}\right) \left(320 \sqrt{41} + 2049\right)^{t}\right)}{328}\] \[\frac{\sqrt{41} \left(- \left(-8196 + 1280 \sqrt{41}\right) \left(2049 - 320 \sqrt{41}\right)^{t} + \left(-8196 - 1280 \sqrt{41}\right) \left(320 \sqrt{41} + 2049\right)^{t}\right)}{82}\]
\[\frac{\left(2049 - 320 \sqrt{41}\right)^{t} \left(8196 - 1280 \sqrt{41}\right)}{8} + \frac{\left(320 \sqrt{41} + 2049\right)^{t} \left(1280 \sqrt{41} + 8196\right)}{8} - \frac{3 \sqrt{41} \left(- \left(2049 - 320 \sqrt{41}\right)^{t} \left(8196 - 1280 \sqrt{41}\right) + \left(320 \sqrt{41} + 2049\right)^{t} \left(1280 \sqrt{41} + 8196\right)\right)}{328}\] \[\frac{\sqrt{41} \left(- \left(2049 - 320 \sqrt{41}\right)^{t} \left(8196 - 1280 \sqrt{41}\right) + \left(320 \sqrt{41} + 2049\right)^{t} \left(1280 \sqrt{41} + 8196\right)\right)}{82}\]

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2024-10-3 16:38
这个是怎么算出来的呢?

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2024-10-3 19:13
alpertron.com.ar/QUAD.HTM

2 ⁢x² + 3 ⁢x⁢y - 4 ⁢y² - 2 ⁢ = 0

The discriminant is D = b² − 4⁢ac = 41

2 X² + 3 XY − 4 ⁢Y² = 2 (1)

The algorithm requires that the coefficient of X² and the right hand side are coprime. This does not happen, so we have to find a value of m such that applying one of the unimodular transformations

  • X = mU + (m−1)V, Y = U + V
  • X = U + V, Y = (m−1)U + mV

the coefficient of U² and the right hand side are coprime. This coefficient equals 2 m² + 3 m − 4 in the first case and -4 (m − 1)² + 3 (m − 1) + 2 in the second case.

We will use the first unimodular transformation with m = 1: X = U, Y = U + V (2)

Using (2), the equation (1) converts to:

U² − 5 UV − 4 ⁢V² = 2 (3)

We will have to solve several quadratic modular equations. To do this we have to factor the modulus and find the solution modulo the powers of the prime factors. Then we combine them by using the Chinese Remainder Theorem.

The different moduli are divisors of the right hand side, so we only have to factor it once.

2 = 2

Searching for solutions U and V coprime.

We have to solve: T² − 5 T − 4 ≡ 0 (mod 2 = 2)

Solutions modulo 2: 0 and 1

  1. T = 0
  2. The transformation U = - 2 ⁢k (4) converts U² − 5 UV − 4 ⁢V² = 2 to PV² + QVk + Rk² = 1 (5)

    where: P = (aT² + bT + c) / n = -2, Q = −(2⁢aT + b) = 5, R = an = 2

    The continued fraction expansion of (Q + D) / (2R) = (5 + 41) / 4 is:

    2+ // 1, 5, 1, 2, 2// (6)

    Solution of (5) found using the convergent V / (−k) = 1 / 3 of (6)

    U = 6, V = 1

    From (2):

    X = 6, Y = 7

    x = 6
    y = 7

    U = -6, V = -1

    From (2):

    X = -6, Y = -7

    x = -6
    y = -7

    The continued fraction expansion of (−Q + D) / (−2R) = (-5 + 41) / (-4) is:

    -1+ // 1, 1, 1, 5, 1, 2, 2// (7)

    x = 6
    y = 7

    x = -6
    y = -7

  3. T = 1
  4. The transformation U =  V - 2 ⁢k (8) converts U² − 5 UV − 4 ⁢V² = 2 to PV² + QVk + Rk² = 1 (9)

    where: P = (aT² + bT + c) / n = -4, Q = −(2⁢aT + b) = 3, R = an = 2

    The continued fraction expansion of (Q + D) / (2R) = (3 + 41) / 4 is:

    2+ // 2, 1, 5, 1, 2// (10)

    The continued fraction expansion of (−Q + D) / (−2R) = (-3 + 41) / (-4) is:

    -1+ // 6, 1, 2, 2, 1, 5// (11)

    Solution of (9) found using the convergent V / (−k) = 1 / -1 of (11)

    U = -1, V = 1

    From (2):

    X = -1, Y = 0

    x = -1
    y = 0

    U = 1, V = -1

    From (2):

    X = 1, Y = 0

    x = 1
    y = 0

    x = -1
    y = 0

    x = 1
    y = 0

Recursive solutions:

xn+1 = 1089 ⁢xn + 2560 ⁢yn
yn+1 = 1280 ⁢xn + 3009 ⁢yn

and also:

xn+1 = 3009 ⁢xn - 2560 ⁢yn
yn+1 = - 1280 ⁢xn + 1089 ⁢yn

70

Threads

440

Posts

4416

Credits

Credits
4416

Show all posts

hejoseph Posted 2025-1-13 09:22
hbghlyj 发表于 2024-10-3 16:38
这个是怎么算出来的呢?
找《谈谈不定方程》这本书,里面有具体解法。

Mobile version|Discuz Math Forum

2025-6-5 01:47 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit