Forgot password?
 Create new account
View 1866|Reply 6

[数列] 已知$a_{n+1}=\frac{1}{2}a_n+\frac{1}{a_n}$,求证是正整数

[Copy link]

133

Threads

259

Posts

2333

Credits

Credits
2333

Show all posts

郝酒 Posted at 2018-7-21 10:08:05 |Read mode
已知数列$\{a_n\}$满足$a_1=1,a_{n+1}=\frac{1}{2}a_n+\frac{1}{a_n}$
证明对$n>1$,$\frac{2}{\sqrt{a_n^2-2}}$是正整数。

Related collections:

65

Threads

414

Posts

3556

Credits

Credits
3556

Show all posts

Tesla35 Posted at 2018-7-21 11:03:53
回复 1# 郝酒


    这不是贴吧那题吗。老套路。结果必是线性递推

133

Threads

259

Posts

2333

Credits

Credits
2333

Show all posts

 Author| 郝酒 Posted at 2018-7-21 11:10:08
回复 2# Tesla35
是的,做不出来,所以问一下。
为什么一定是线性递推呢?通项公式求出来很复杂

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2018-7-21 12:57:09

1

Threads

153

Posts

1088

Credits

Credits
1088

Show all posts

Infinity Posted at 2018-7-21 16:08:33
回复 1# 郝酒


问题可以进一步挖掘出信息。
很容易看出,1楼的递推式等价为牛顿迭代法求$x^2=2$的根的迭代公式(迭代函数$\varphi(x)=x/2+1/x$),不过收敛的必要条件为$|\varphi\,'(x)|<1$,即$(x/2+1/x)'=1/2-1/x^2<1$。事实上,由均值不等式可知$x=a_n>\sqrt{2}$,因此$0<1/2-1/x^2<1/2<1$,故在$x=\sqrt{2}$的临域内取初值迭代,必将收敛到该不动点。

另一方面,通项$a_n$必为有理数,上面提示通项逐渐收敛到$\sqrt{2}$。不难猜测通项可能为$\sqrt{2}$连分数展开的渐近分数,即通项可表为既约分数形式$a_n=\frac{x_k}{y_k}$($k$为某个渐近阶数)。
进一步,佩尔方程$x^2-Dy^2=1$的基本解($x_0,y_0$)可由$\sqrt{D}$的渐近分数获得(本问题相当于$D=2$),故($x_k,y_k$)正好就是基本解。于是$\sqrt{a_n^2-2}=\frac{\sqrt{x_k^2-2y_k^2}}{y_k}=\frac{1}{y_k}$从而可知$\frac{2}{\sqrt{a_n^2-2}}=2y_k$必为正整数,且是4的倍数,因为$y_k$为偶数。因为对于不定方程$x^2-2y^2=1$,要么$x$为奇$y$为偶,要么$x,y$均为奇数。考虑$x,y$都是奇数的情形,对不定方程继续摸4得,$(\pm1)^2-2\times(\pm1)^2\not\equiv 1\pmod{4}$,因此这种情形不可能存在。所以只能是$x$为奇数,$y$为偶数。

经检验,果不其然
前几项通项\[a_n={1,\frac{3}{2},\frac{17}{12},\frac{577}{408},\frac{665857}{470832},\cdots}\]而\[\sqrt{2}=1+\frac{1}{2+\frac{1}{2+\cdots}}\approx\color{Blue}{1},\color{Blue}{\frac{3}{2}},\frac{7}{5},\color{Blue}{\frac{17}{12}},\frac{41}{29},\frac{99}{70},\frac{239}{169},\color{Blue}{\frac{577}{408}},\frac{1393}{985},\frac{3363}{2378},\frac{8119}{5741},\frac{19601}{13860},\frac{47321}{33461},\frac{114243}{80782},\frac{275807}{195025},\color{Blue}{\frac{665857}{470832}},\cdots\]

133

Threads

259

Posts

2333

Credits

Credits
2333

Show all posts

 Author| 郝酒 Posted at 2018-7-21 16:58:02
谢谢诸位。学习了:)

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2018-7-21 17:31:30
回复  郝酒


问题可以进一步挖掘出信息。
很容易看出,1楼的递推式等价为牛顿迭代法求$x^2=2$的根的迭代 ...
Infinity 发表于 2018-7-21 16:08
有意思~

手机版Mobile version|Leisure Math Forum

2025-4-20 22:11 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list