Forgot password?
 Create new account
View 2848|Reply 10

[数论] 请教2015年全国联赛湖北预赛第10题

[Copy link]

4

Threads

14

Posts

111

Credits

Credits
111

Show all posts

yhg1970 Posted at 2015-6-2 16:02:56 |Read mode
使得(p+1)/2和(p^2+1)/2都是完全平方数的最大质数为___________。

答案为7,不知如何解析?数论菜鸟请教大家。

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2015-6-2 23:47:10
我也是数论菜鸟,不知这样做对不对
设 $p+1=2m^2$, $p^2+1=2n^2$, $m$, $n\inN^+$,两式相减得
\[p(p-1)=2(n-m)(n+m),\]
由于 $p$ 为奇质数,故必有 $p\mid(n-m)$ 或 $p\mid(n+m)$,由此可得
\[p\leqslant n+m=\sqrt{\frac{p^2+1}2}+\sqrt{\frac{p+1}2},\]
两边平方整理得
\[(p-2)(p+1)\leqslant 2\sqrt{(p^2+1)(p+1)},\]
左边恒为正,故再两边平方得
\[(p-2)^2(p+1)\leqslant 4(p^2+1),\]
展开为
\[p^2(p-7)\leqslant0,\]
所以 $p\leqslant7$,当 $p=7$ 时满足题意,故最大质数 $p$ 为 $7$。

4

Threads

14

Posts

111

Credits

Credits
111

Show all posts

 Author| yhg1970 Posted at 2015-6-3 09:44:12
回复 2# kuing


    谢谢kuing出手相助。在我看来您是挥洒自如无所不通的,您太谦虚了。

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2015-6-3 11:50:28
回复 3# yhg1970

[NO]不是谦虚,数论我确实没研究

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2015-6-3 13:48:05
“2015年全国高中数学联合竞赛湖北省预赛高一试题”原来是高一的预赛

1

Threads

81

Posts

561

Credits

Credits
561

Show all posts

活着&存在 Posted at 2015-6-3 16:34:38
Last edited by hbghlyj at 2025-3-20 04:14:58关于不定方程 $k^2+(k+1)^2=n^2$ 的正整数解的情况有没有确定的结论?

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2015-6-3 19:31:54

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2015-6-4 10:35:13
Last edited by realnumber at 2015-6-4 10:55:00回复 6# 活着&存在
n为奇数,设n=2t+1,t为非负整数
可得$k^2+(k+1)^2=(2t+1)^2$,即$k(k+1)=2t(t+1)$
又(k,k+1)=1=(t,t+1),
所以k=t或k=2t或k=t+1或k=2(t+1)------这步似乎错了.先保留着,想想有没改正的可能.
解得t=2,k=3.

1楼p=2k+1,那么p=7

67

Threads

435

Posts

4269

Credits

Credits
4269

Show all posts

hejoseph Posted at 2015-6-4 11:28:20
$k^2+(k+1)^2=n^2$ 整理得
\[
(2k+1)^2-2n^2=-1
\]
这个不定方程正整数通解就是
\[
2k+1+\sqrt 2n=\left(1+\sqrt 2\right)^{2t+1}
\]
其中 $t$ 是任意正整数

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2015-6-5 22:10:08
回复 9# hejoseph
Pell方程?

67

Threads

435

Posts

4269

Credits

Credits
4269

Show all posts

hejoseph Posted at 2015-6-15 14:48:01
就是Pell方程的结论

手机版Mobile version|Leisure Math Forum

2025-4-21 01:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list