Forgot password?
 Create new account
View 1392|Reply 4

[数论] 一个二次不定方程

[Copy link]

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

力工 Posted at 2018-11-21 07:28:47 |Read mode
求方程$x^2+x=2y^2$的正整数解。
这个题完全迷茫了, 不知如何下手。

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2018-11-21 09:09:07
俺也是数论盲,胡乱试一下……

设 `y=2^km`,其中 `m` 为奇数,方程为 `x(x+1)=2^{2k+1}m^2`,
由于 `x` 与 `x+1` 互素,所以 `2^{2k+1}` 要么由 `x` 提供要么由 `x+1` 提供,故此有两种情况:
`x=2^{2k+1}a^2`, `x+1=b^2` 或 `x+1=2^{2k+1}a^2`, `x=b^2`,其中 `a`, `b` 为奇数,`ab=m` 且 `(a,b)=1`,
再令 `c=2^ka`,问题转化为 `b^2-2c^2=\pm1` 的问题,这个好像已经有定论了是吗?

总感觉做了些多余的事……

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2018-11-21 09:30:17
$x^2+x=2y^2$

$4x^2+4x+1=8y^2+1$

$(2x+1)^2-8y^2=1$

這樣就是Pell了

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2018-11-21 10:03:47
回复 3# tommywong

果然我写的那些都是多余的……

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2024-10-3 16:08:47
sympygamma.com/input/?i=diophantine%28x**2%2Bx-2*y**2%29
x y
\[\frac{\left(-3 + 2 \sqrt{2}\right) \left(17 - 12 \sqrt{2}\right)^{t}}{4} + \frac{\left(-3 - 2 \sqrt{2}\right) \left(12 \sqrt{2} + 17\right)^{t}}{4} - \frac{1}{2}\] \[\frac{\sqrt{2} \left(- \left(-3 + 2 \sqrt{2}\right) \left(17 - 12 \sqrt{2}\right)^{t} + \left(-3 - 2 \sqrt{2}\right) \left(12 \sqrt{2} + 17\right)^{t}\right)}{8}\]
\[\frac{\left(17 - 12 \sqrt{2}\right) \left(17 - 12 \sqrt{2}\right)^{t}}{4} + \frac{\left(12 \sqrt{2} + 17\right) \left(12 \sqrt{2} + 17\right)^{t}}{4} - \frac{1}{2}\] \[\frac{\sqrt{2} \left(- \left(17 - 12 \sqrt{2}\right) \left(17 - 12 \sqrt{2}\right)^{t} + \left(12 \sqrt{2} + 17\right) \left(12 \sqrt{2} + 17\right)^{t}\right)}{8}\]
\[\frac{\left(3 - 2 \sqrt{2}\right) \left(17 - 12 \sqrt{2}\right)^{t}}{4} + \frac{\left(2 \sqrt{2} + 3\right) \left(12 \sqrt{2} + 17\right)^{t}}{4} - \frac{1}{2}\] \[\frac{\sqrt{2} \left(- \left(3 - 2 \sqrt{2}\right) \left(17 - 12 \sqrt{2}\right)^{t} + \left(2 \sqrt{2} + 3\right) \left(12 \sqrt{2} + 17\right)^{t}\right)}{8}\]
\[\frac{\left(-17 + 12 \sqrt{2}\right) \left(17 - 12 \sqrt{2}\right)^{t}}{4} + \frac{\left(-17 - 12 \sqrt{2}\right) \left(12 \sqrt{2} + 17\right)^{t}}{4} - \frac{1}{2}\] \[\frac{\sqrt{2} \left(- \left(-17 + 12 \sqrt{2}\right) \left(17 - 12 \sqrt{2}\right)^{t} + \left(-17 - 12 \sqrt{2}\right) \left(12 \sqrt{2} + 17\right)^{t}\right)}{8}\]

手机版Mobile version|Leisure Math Forum

2025-4-21 14:20 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list