Forgot password?
 Create new account
View 168|Reply 4

[几何] 一道半圆内正方形,证线段相等

[Copy link]

133

Threads

259

Posts

2333

Credits

Credits
2333

Show all posts

郝酒 Posted at 2024-11-19 21:15:57 |Read mode
BC是半圆的直径, D是半圆上任意一点,过D作DE⊥BC于E,在BC上取点F满足BF=BD,以EF为一边作正方形EFGH,连接BH并延长,交半圆于K,证明:GH=GK.
圆内正方形证等腰.png
我能用坐标加三角算,但是感觉这题应该有背景,看上去KGO是共线的.

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2024-11-19 21:31:16
《撸题集》P.820 题目 6.2.6 似乎是这个的逆命题?

Comment

记忆力太强了。  Posted at 2024-11-20 14:10

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2024-11-20 02:33:45
p0206.png

如图,连这两条线,不用去管什么$O, G, K$共不共线,那是另一个问题

令圆半径$R$,$BE=a$

于是
\[DE^2=OD^2-OE^2=R^2-(a-R)^2=2aR-a^2\]
\[BD=BF=\sqrt{DE^2+BE^2}=\sqrt{2aR-a^2+a^2}=\sqrt{2aR}\]
\[EF=EH=BF-BE=\sqrt{2aR}-a\]
\[CF=BC-BF=2R-\sqrt{2aR}\]

注意我们的目标,想要证明原题,其实只需要证明$\angle BKF=45\du$,又显然$\angle BKC=90\du$,即证明$KF$为$\angle BKC$平分线即可,然后由角平分线定理,可知需要证明:
\[\frac{BK}{KC}=\frac{BF}{CF}\]
这里面显然$\Delta BKC\sim\Delta BEH$,即
\[\frac{BK}{KC}=\frac{BE}{EH}=\frac{BE}{EF}\]
我们需要证明的东西,也就变成了
\[\frac{BE}{EF}=\frac{BF}{CF}\]
或者说
\[BE\cdot CF=EF\cdot BF\]
接下来就是计算了
\[BE\cdot CF=a\cdot(2R-\sqrt{2aR})=2aR-a\sqrt{2aR}\]
\[EF\cdot BF=(\sqrt{2aR}-a)\cdot\sqrt{2aR}=2aR-a\sqrt{2aR}\]
显然相等,于是完事

133

Threads

259

Posts

2333

Credits

Credits
2333

Show all posts

 Author| 郝酒 Posted at 2024-11-20 11:22:45
谢谢两位,学习了.

手机版Mobile version|Leisure Math Forum

2025-4-21 14:47 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list