Forgot password?
 Create new account
View 2381|Reply 9

[几何] 应该是初中圆中的最值题

[Copy link]

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2015-4-29 23:34:35 |Read mode
Last edited by hbghlyj at 2025-4-13 21:51:21半圆⊙O中,AB为直径,C、D为半圆上任意两点,将 弧CD 沿直线CD翻折使AB与CD弧相切,已知AB=8,求CD的最大值_________。

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

 Author| isee Posted at 2015-4-29 23:56:55
结果非常容易猜到。

这个一看到就容易直接上解几。

以AB所在的直线为x轴,则圆O方程为:$x^2+y^2=16$.

依题,翻折后与AB相切的圆,设为:$(x-a)^2+(y-4)^2=16$.

则CD直线为:$2ax+8y-a^2-16=0$

从而圆心O到CD的距离为:$d=\dfrac {a^2+16}{\sqrt {4a^2+64}}$.


于是:$CD^2=4(16-d^2)=4\left(16-\dfrac {(a^2+16)^2}{4a^2+64}\right)=64-(a^2+16)$.


显然当$a=0$时(这与猜想一致),取得最大值$CD=4\sqrt 3$.

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

 Author| isee Posted at 2015-4-30 00:08:49
得到结果了,就好办。


后来一想,既然$O'COD$($O'$为弧CD所在的圆的圆心)为平行四边形,

则由平行四边形四边平方和等于两对角线平方和,即:

\[16+16+16+16=CD^2+O'O^2.\]


明显的,若圆$O'$与AB相切,则当$O'O_{\min}=4$时,CD有最大值$4\sqrt 3$.

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

 Author| isee Posted at 2015-4-30 00:11:46
不过,这两法还是代数味浓,有没平几呢?

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2015-4-30 00:29:59
对称就好了嘛
QQ截图20150430002636.gif
两圆心距减小则公共弦长增大,故显然切于圆心时最大。

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

 Author| isee Posted at 2015-4-30 00:30:01
Last edited by isee at 2015-4-30 00:40:00哦,如此这般啊。

如图,翻折后的圆$O'$与AB相切,要使CD最大,则在圆O中,需要弦心距离$d$最小,而

\[2d=O'O\geqslant O'E=r=4\Rightarrow  d\geqslant 2\Rightarrow CD_{\max}=2\sqrt {4^2-2^2}=4\sqrt 3.\]
snap.png

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2015-4-30 00:33:50
回复 6# isee

道理一样,你写多了,所以发慢了

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

 Author| isee Posted at 2015-4-30 00:37:56
回复 5# kuing


    一语中地,闪了,先

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2015-4-30 00:56:29
这题肯定是初中的了,而且是道好题,比那些又长又臭的好多了。
如果放高中去,估计会坑掉很多人……

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2015-5-1 06:35:33
回复 9# kuing
平几会杀掉大半多的人!

手机版Mobile version|Leisure Math Forum

2025-4-21 01:19 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list