|
kuing
Posted at 2016-10-17 18:09:57
设大圆圆心为 $O$,从左至右三个小圆半径分别为 $r_1$, $r_2$, $r_3$,与大圆直径的切点分别为 $A$, $B$, $C$。
先考查左边两个小圆,根据勾股定理有
\begin{align*}
OA^2&=(R-r_1)^2-r_1^2, \\
OB^2&=(R-r_2)^2-r_2^2, \\
AB^2&=(r_1+r_2)^2-(r_1-r_2)^2,
\end{align*}
注意到 $AB^2=(OA+OB)^2$ 或 $(OA-OB)^2$,无论哪种情况,均可得到
\[(OA^2+OB^2-AB^2)^2=4OA^2\cdot OB^2,\]
将以上数据代入展开按 $r_1$ 整理为
\[(R+2r_2)^2r_1^2-2R(3R-2r_2)r_2r_1+R^2r_2^2=0,\]
对右边两个小圆同理也有
\[(R+2r_2)^2r_3^2-2R(3R-2r_2)r_2r_3+R^2r_2^2=0,\]
可见 $r_1$, $r_3$ 为方程 $(R+2r_2)^2x^2-2R(3R-2r_2)r_2x+R^2r_2^2=0$ 的两根,因此由韦达定理有
\[r_1+r_3=\frac{2R(3R-2r_2)r_2}{(R+2r_2)^2},\]
由此得到
\[R-(r_1+r_2+r_3)=\frac{(R-2r_2)(R^2-Rr_2+2r_2^2)}{(R+2r_2)^2},\]
显然 $R\geqslant 2r_2$,所以 $R\geqslant r_1+r_2+r_3$。 |
|