Forgot password?
 Create new account
View 192|Reply 1

[几何] 垂直问题

[Copy link]

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

力工 Posted at 2023-7-24 22:32:05 |Read mode
在$\triangle ABC$中,点$M$为$BC$的中点,圆$O$过点$A,C$且与直线$AM$相切,设$BA$的延长线与$\odot O$交于点$D$,$CD$的延长线与$MA$交于点$P$,求证:$OP\perp BC$. QQ图片20230724223059.png

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2023-7-25 02:12:40
Last edited by 乌贼 at 2023-7-27 02:45:00如图: 17.png
     构建等腰梯形$ ACBE $,$ G $为$ AB $与$ CE $交点,$ F $为$ MG $与$ OA $交点,$ \odot MBE $交$ AB $于$ J $。有\[ \angle JEF+\angle JEM=\angle JEF+\angle JBM=90\du =\angle MGB+\angle JBM\riff \angle FEJ=\angle MGB \]即$ EFJG $四点共圆,又$
\angle EGF=\angle AGF $,得\[ FJ=FE=AE \riff \dfrac{AF}{AJ}=\dfrac{AO}{AD}\]又\[ \angle BJM=\angle BEM=\angle MAC=\angle ADC\riff JM\px CD\riff \dfrac{AP}{AM}=\dfrac{AD}{AJ}=\dfrac{AF}{AO}\riff MJ\px PO\riff PO\perp BC \]

手机版Mobile version|Leisure Math Forum

2025-4-22 06:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list