Forgot password?
 Register account
View 1636|Reply 3

[几何] 垂直问题

[Copy link]

279

Threads

546

Posts

5419

Credits

Credits
5419

Show all posts

力工 Posted 2023-7-24 22:32 |Read mode
Last edited by hbghlyj 2025-5-27 00:32在$\triangle ABC$中,点$M$为$BC$的中点,圆$O$过点$A,C$且与直线$AM$相切,设$BA$的延长线与$\odot O$交于点$D$,$CD$的延长线与$MA$交于点$P$,求证:$OP\perp BC$.

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2023-7-25 02:12
Last edited by 乌贼 2023-7-27 02:45如图: 17.png
     构建等腰梯形$ ACBE $,$ G $为$ AB $与$ CE $交点,$ F $为$ MG $与$ OA $交点,$ \odot MBE $交$ AB $于$ J $。有\[ \angle JEF+\angle JEM=\angle JEF+\angle JBM=90\du =\angle MGB+\angle JBM\riff \angle FEJ=\angle MGB \]即$ EFJG $四点共圆,又$
\angle EGF=\angle AGF $,得\[ FJ=FE=AE \riff \dfrac{AF}{AJ}=\dfrac{AO}{AD}\]又\[ \angle BJM=\angle BEM=\angle MAC=\angle ADC\riff JM\px CD\riff \dfrac{AP}{AM}=\dfrac{AD}{AJ}=\dfrac{AF}{AO}\riff MJ\px PO\riff PO\perp BC \]

3158

Threads

7924

Posts

610K

Credits

Credits
64218
QQ

Show all posts

hbghlyj Posted 2025-5-27 00:11
Eisatopon Math AI Challenges: $OP \perp BC$
高中联赛难度几何100题解答
陈煜 奇趣数学苑 2022-07-16

Comment

谢谢!大佬的专注程度记忆力杠杠的。  Posted 2025-5-27 15:24

Mobile version|Discuz Math Forum

2025-6-6 10:21 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit