Forgot password?
 Create new account
View 249|Reply 7

[几何] AB是圆O的对径点,C,D的切线交于点E, AD,BC交点M,延长EM交AB于点N,求证CNDE共圆

[Copy link]

13

Threads

5

Posts

116

Credits

Credits
116

Show all posts

zhiwen Posted at 2023-11-4 21:21:58 |Read mode
Last edited by kuing at 2024-1-13 00:11:00 144328ddvzn8cn5jzo6v5e.png
如图, AB是圆O的对径点,圆O上C,D的切线交于点E,
连结AD,BC交于点M,延长EM交AB于点N。
求证:C,N,D,E共圆

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2023-11-4 23:02:50
Last edited by kuing at 2023-11-5 21:46:00由切线长相等知 `EC=ED`,下面先证明 `EM` 也等于这两条切线长。
QQ截图20231104230202.png
如上图,假设 `EM<EC`,则有 `\angle1>\angle2=\angle3`,而 `\angle1+\angle4=180\du`,所以 `\angle3+\angle4<180\du`,而 `\angle MCA=90\du`,于是 `\angle MNA>90\du`。

同理由 `EM<ED` 可推出 `\angle MNB>90\du`,于是这就矛盾了。

假设 `EM>EC`,则类似地也可推出 `\angle MNA<90\du` 且 `\angle MNB<90\du`,还是矛盾。

综上得 `EM=EC=ED`。

于是 `\angle1=\angle2=\angle3`,所以 `ACMN` 共圆,因此 `MN\perp AB`。

然后有 `\angle EDC=\angle CAD=\angle CNM`,所以 `CNDE` 共圆。

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

hbghlyj Posted at 2023-11-4 23:43:03
Last edited by hbghlyj at 2023-11-5 14:45:00kuing.cjhb.site/forum.php?mod=viewthread&tid=1434

Comment

乃思😊😊😊  Posted at 2023-11-4 23:56
原来撸题集也有记录这个链接,我竟然忘了唉😥  Posted at 2023-11-4 23:58

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2023-11-5 00:13:19
Last edited by kuing at 2023-11-5 22:25:00哇,弧终于能显示了,PS:10年前了……
isee=freeMaths@知乎

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2023-11-5 00:18:29
Last edited by kuing at 2023-11-5 22:26:00
isee 发表于 2023-11-5 00:13
哇,弧终于能显示了,PS:10年前了……
是 hbghlyj 在那帖的 1# 点评里加了句
  1. $\def\wideparen{\overparen}$
Copy the Code
把你当时写的 \wideparen 强行变成了 \overparen

两个字母看着还行,三个就不咋嘀,$\overparen{ABC}$效果 $\overparen{ABC}$

123

Threads

463

Posts

3299

Credits

Credits
3299

Show all posts

TSC999 Posted at 2023-11-6 12:01:14
用复平面上的解析几何方法做此题比较省事:
老题目解答.png

手机版Mobile version|Leisure Math Forum

2025-4-21 01:32 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list