Forgot password?
 Register account
View 1368|Reply 4

[几何] 在C处的切线平行于BN

[Copy link]

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

hbghlyj Posted 2025-1-8 08:46 |Read mode
Last edited by hbghlyj 2025-5-19 19:48$A(-3, 0),B(-1, 0)$
求证:曲线$$y^2 + x^2 + 4x\ln(\abs x)-3=c x$$($c$为常数)在其上任一点$C$的切线平行于$BN$,其中$N$为$\triangle ABC$的九点圆中心。

Comment

不过,这让我突然好想吃“飞鱼雪糕”😋  Posted 2025-4-30 23:51

36

Threads

114

Posts

935

Credits

Credits
935

Show all posts

1+1=? Posted 2025-4-28 12:08 From mobile phone
太难了

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2025-4-30 18:06
hbghlyj 发表于 2025-4-30 02:40
是否可以使用@kuing的方法来证明呢
显然可以,就是计算坐标稍微麻烦一点点。

记 `\triangle ABC` 的外心为 `O`,重心为 `G`,由于九点圆其实就是三边中点的外接圆,所以九点圆圆心 `N` 应满足
\begin{align*}
\vv{OG}=\frac23\vv{ON}&\iff2\vv{ON}=3\vv{OG}=\vv{OA}+\vv{OB}+\vv{OC}\\
&\iff2\vv{BN}=\vv{BA}+\vv{OC},
\end{align*}
现在设 `C(x_0,y_0)`,则易知 `BC` 的垂直平分线的方程为
\[y-\frac{y_0}2=-\frac{x_0+1}{y_0}\left(x-\frac{x_0-1}2\right),\]
外心 `O` 显然在 `x=-2` 上,代入上式即得
\[O\left(-2,\frac{(x_0+1)(x_0+3)}{2y_0}+\frac{y_0}2\right),\]
所以
\begin{align*}
2\vv{BN}&=(-2,0)+\left(x_0+2,y_0-\frac{(x_0+1)(x_0+3)}{2y_0}-\frac{y_0}2\right)\\
&=\left(x_0,-\frac{x_0^2+4x_0+3-y_0^2}{2y_0}\right).
\end{align*}

另一方面,将曲线方程变形为
\[F(x,y)=\frac{y^2-3}x+x+4\ln\abs x-c=0,\]
则在 `C` 处的切线斜率为
\[-\frac{F_x(x_0,y_0)}{F_y(x_0,y_0)}=-\frac{\frac{3-y_0^2}{x_0^2}+1+\frac4{x_0}}{\frac{2y_0}{x_0}}=-\frac{3-y_0^2+x_0^2+4x_0}{2x_0y_0},\]
显然与 `\vv{BN}` 同向,即得证。

Comment

厉害  Posted 2025-4-30 19:54

Mobile version|Discuz Math Forum

2025-6-5 18:34 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit