Forgot password
 Register account
View 394|Reply 1

[几何] 抛物线中三线相切与四点共圆问题

[Copy link]

423

Threads

909

Posts

0

Reputation

Show all posts

lemondian posted 2022-4-24 08:26 |Read mode
如图,已知$\triangle ABC$内接于抛物线$E:x^2=y$,且边$AB,AC$所在直线分别与抛物线$M:y^2=4x$相切,$F$为抛物线$M$的焦点。
求证:(1)边$BC$所在直线与抛物线$M$相切;
(2)$A,C,B,F$四点共圆。
42401.jpg

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2022-4-24 12:43
取 `A`, `B` 为直线 `y=x+1` 与 `y=x^2` 的两交点,再取 `C(-1,1)`,不难验证此时 `\triangle ABC` 三边所在直线均与 `y^2=4x` 相切。
于是根据彭赛列闭合定理可知(1)成立。

至于(2),见 forum.php?mod=viewthread&tid=3441#pid14170

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 05:48 GMT+8

Powered by Discuz!

Processed in 0.017355 seconds, 46 queries