Forgot password?
 Register account
View 1918|Reply 4

[几何] 切线与$BC$的夹角等于$\angle BAC$

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2025-5-28 19:30 |Read mode
$A(1,0),B(0,0)$
求证:曲线$\tan ^{-1}(\frac{x}{y})+y=c$($c$为常数)在其上任一点$C$的切线与$BC$的夹角等于$\angle BAC$.

4

Threads

139

Posts

2198

Credits

Credits
2198

Show all posts

Aluminiumor Posted 2025-5-29 00:10
设 $C(x_0,y_0)$
$\tan\angle BAC=\dfrac{y_0}{1-x_0}$
$k_{BC}=\dfrac{y_0}{x_0}$
曲线方程可写为 $x=\dfrac{y}{\tan(c-y)}$
两边微分,可得切线斜率 $k=\dfrac{\tan^2(c-y_0)}{\tan(c-y_0)-(\tan^2(c-y_0)+1)y_0}=\dfrac{y_0}{x_0-x_0^2-y_0^2}$
切线与 $BC$ 夹角正切值为 $\dfrac{k-k_{BC}}{1+k\cdot k_{BC}}=\dfrac{y_0}{1-x_0}=\tan\angle BAC$
得证.

Comment

得证  Posted 2025-5-29 00:24
Wir müssen wissen, wir werden wissen.

Mobile version|Discuz Math Forum

2025-5-31 10:43 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit