Forgot password
 Register account
View 2119|Reply 4

[几何] 切线与$BC$的夹角等于$\angle BAC$

[Copy link]

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2025-5-28 19:30 |Read mode
$A(1,0),B(0,0)$
求证:曲线$\tan ^{-1}(\frac{x}{y})+y=c$($c$为常数)在其上任一点$C$的切线与$BC$的夹角等于$\angle BAC$.

4

Threads

137

Posts

12

Reputation

Show all posts

Aluminiumor posted 2025-5-29 00:10
设 $C(x_0,y_0)$
$\tan\angle BAC=\dfrac{y_0}{1-x_0}$
$k_{BC}=\dfrac{y_0}{x_0}$
曲线方程可写为 $x=\dfrac{y}{\tan(c-y)}$
两边微分,可得切线斜率 $k=\dfrac{\tan^2(c-y_0)}{\tan(c-y_0)-(\tan^2(c-y_0)+1)y_0}=\dfrac{y_0}{x_0-x_0^2-y_0^2}$
切线与 $BC$ 夹角正切值为 $\dfrac{k-k_{BC}}{1+k\cdot k_{BC}}=\dfrac{y_0}{1-x_0}=\tan\angle BAC$
得证.

Comment

得证  posted 2025-5-29 00:24
Wir müssen wissen, wir werden wissen.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:38 GMT+8

Powered by Discuz!

Processed in 0.021307 seconds, 51 queries