Forgot password?
 Register account
View 1974|Reply 6

[几何] 与抛物线弦有关的距离最小值

[Copy link]

414

Threads

905

Posts

110K

Credits

Credits
11001

Show all posts

lemondian Posted 2020-6-15 08:45 |Read mode
过点$P(0,1)$作一直线$l$,$l$与抛物线$y=x^2$交于$A,B$两不同点,过点$A,B$分别作抛物线$A,B$的切线,两切线交于点$Q$。求点$Q$到直线$AB$的距离的最小值。

13

Threads

901

Posts

110K

Credits

Credits
12272

Show all posts

色k Posted 2020-6-15 13:49
Q在P的极线y=-1上,可设Q(m,-1),则AB: y=2mx+1,然后代点到直线距离公式即可

414

Threads

905

Posts

110K

Credits

Credits
11001

Show all posts

 Author| lemondian Posted 2020-6-15 14:26
回复 2# 色k
易得$d=\dfrac{2m^2+2}{\sqrt{4m^2+1}}$,往下如何求最值呢?

13

Threads

901

Posts

110K

Credits

Credits
12272

Show all posts

色k Posted 2020-6-15 14:36
分子拆一下均值不就好了,基本功啊

414

Threads

905

Posts

110K

Credits

Credits
11001

Show all posts

 Author| lemondian Posted 2020-6-15 14:45
回复 4# 色k
哦,谢谢!我想偏了,用导数,难算了

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2020-6-15 17:19
也可以不用点到直线距离公式……
S R H A B P Q
如图,过 `Q` 作 `AB` 的垂线,垂足为 `H`,`QH` 及 `y=-1` 交 `y` 轴于 `R`, `S`。
沿用 2# 的东西,不妨设 `m>0`,由 `k_{AB}=2m` 得 `SQ:SR=2m`,可见 `SR=1/2`, `RP=3/2`,于是 `RH\cdot RQ=RS\cdot RP=3/4`,所以 `QH=RH+RQ\geqslant2\sqrt{RH\cdot RQ}=\sqrt3`,当 `RH=RQ` 时取等。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2020-6-16 10:29
回复 6# kuing
几何简单一点。硬翻译一把也简单。

Mobile version|Discuz Math Forum

2025-6-5 22:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit