Forgot password?
 Create new account
View 1841|Reply 6

[几何] 与抛物线弦有关的距离最小值

[Copy link]

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

lemondian Posted at 2020-6-15 08:45:43 |Read mode
过点$P(0,1)$作一直线$l$,$l$与抛物线$y=x^2$交于$A,B$两不同点,过点$A,B$分别作抛物线$A,B$的切线,两切线交于点$Q$。求点$Q$到直线$AB$的距离的最小值。

15

Threads

948

Posts

110K

Credits

Credits
12412

Show all posts

色k Posted at 2020-6-15 13:49:34
Q在P的极线y=-1上,可设Q(m,-1),则AB: y=2mx+1,然后代点到直线距离公式即可

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

 Author| lemondian Posted at 2020-6-15 14:26:15
回复 2# 色k
易得$d=\dfrac{2m^2+2}{\sqrt{4m^2+1}}$,往下如何求最值呢?

15

Threads

948

Posts

110K

Credits

Credits
12412

Show all posts

色k Posted at 2020-6-15 14:36:09
分子拆一下均值不就好了,基本功啊

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

 Author| lemondian Posted at 2020-6-15 14:45:34
回复 4# 色k
哦,谢谢!我想偏了,用导数,难算了

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2020-6-15 17:19:47
也可以不用点到直线距离公式……
S R H A B P Q
如图,过 `Q` 作 `AB` 的垂线,垂足为 `H`,`QH` 及 `y=-1` 交 `y` 轴于 `R`, `S`。
沿用 2# 的东西,不妨设 `m>0`,由 `k_{AB}=2m` 得 `SQ:SR=2m`,可见 `SR=1/2`, `RP=3/2`,于是 `RH\cdot RQ=RS\cdot RP=3/4`,所以 `QH=RH+RQ\geqslant2\sqrt{RH\cdot RQ}=\sqrt3`,当 `RH=RQ` 时取等。

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

敬畏数学 Posted at 2020-6-16 10:29:36
回复 6# kuing
几何简单一点。硬翻译一把也简单。

手机版Mobile version|Leisure Math Forum

2025-4-21 19:11 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list