Forgot password?
 Register account
View 1107|Reply 6

[几何] 抛物线外切三角形 F到切点距离之积

[Copy link]

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

hbghlyj Posted 2021-5-31 16:42 |Read mode
Last edited by 2021-5-31 16:49抛物线$y^2$=2px(p>0)上不同的三点A,B,C处的切线两两相交于$P_1,P_2,P_3$,
设抛物线的焦点为F,则$ FA \cdot FB\cdot FC=F P_{1}\cdot F P_{2} \cdot F P_{3}. $
求一个几何证明
只需证如下结论:过P作抛物线的两条切线,切点为A,B,求证FP²=FA⋅FB.
新建位图图像.jpg

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

 Author| hbghlyj Posted 2021-5-31 23:06
Last edited by hbghlyj 2021-5-31 23:19 新建位图图像.png
设A,B在准线上的投影为C,D,则AC=AF,BD=BF.由光学性质有AP平分∠CAF,所以AP垂直平分CF,CP=FP,同理DP=FP,所以CP=DP,∠CDP=∠DCP,故∠PFA=∠PCA=∠PDB=∠PFB,又2∠AFP+2∠APF+2∠BPF=∠ACP+∠PDB+∠CPD=360°,有∠AFP+∠APF+∠BPF=180°,即∠BPF=∠PAF,所以△AFP~△PFB,FP²=FA⋅FB.

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2021-5-31 23:52

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

 Author| hbghlyj Posted 2021-5-31 23:55
Last edited by hbghlyj 2021-6-3 02:09发现一个精彩的结论:

这帖知$AP_1,BP_2,CP_3$共点,
设所共之点为P,
求证$PA \cdot PB\cdot PC=P P_{1}\cdot P P_{2} \cdot P P_{3}.$

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

 Author| hbghlyj Posted 2021-6-3 02:07
Last edited by hbghlyj 2021-8-5 11:35回复 4# hbghlyj
tieba.baidu.com/p/7385876871
熟知 CD/DB = EC/CA = AB/BF
注意 PA/PD * DC/CB * BF/FA = 1 等三式
第二个等式是梅氏定理,第一个$\frac{CD}{DB} = \frac{EC}{CA} = \frac{AB}{BF}$是因為如下結果
-17ee626eb8f07808.png

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

 Author| hbghlyj Posted 2021-6-4 01:13
回复 5# hbghlyj
顶一下5#

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

 Author| hbghlyj Posted 2021-8-5 11:32
啊我明白了

Mobile version|Discuz Math Forum

2025-6-5 07:50 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit