Forgot password?
 Register account
View 3141|Reply 12

[几何] 三角形的内切锥线和塞瓦定理

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-7-29 22:04 |Read mode
Last edited by hbghlyj 2023-1-22 14:02圆锥曲线c,从c外部一点到c的切线长度与相应的切点处的曲率半径的立方根成比例,即:
$\frac{AE}{AF}=\sqrt[3]{\frac{\text{E处的曲率半径}}{\text{F处的曲率半径}}}$
推论:
圆锥曲线与△ABC三边切于D,E,F,则$\dfrac{AF}{BF}\cdot\dfrac{BD}{DC}\cdot\dfrac{CE}{EA}=1$,由塞瓦定理,直线AD,BE,CF共点
IMG_20200723_175926.jpg
又见这里的性质5

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2020-7-30 00:14
这个有点意思

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-7-30 01:52
引理:椭圆 `x^2/a^2+y^2/b^2=1` 上一点处的切线与焦半径的夹角为 `\alpha`,则该点处的曲率半径为 `b^2/(a\sin^3\alpha)`。

引理的证明有空再补;引理的双曲线、抛物线的情形也有空再补……(太懒了其实根本就不想码……

现在证 1# 的结论:
QQ截图20200730015140.png
如上图,其中 `J` 为焦点(由于楼主用掉了 `F` 只好用别的字母),熟知 `AJ` 平分 `\angle EJF`,故由正弦定理有
\[\frac{AE}{AF}=\frac{AE/AJ}{AF/AJ}=\frac{\sin\angle AJE/\sin\alpha}{\sin\angle AJF/\sin\beta}=\frac{\sin\beta}{\sin\alpha},\quad(*)\]根据引理有
\[\frac{\sin\beta}{\sin\alpha}=\sqrt[3]{\frac{E~\text{处的曲率半径}}{F~\text{处的曲率半径}}},\]即得证。

PS、如果单纯是为了推出后面那个共点推论的话,用式 (*) 足矣,不需要扯上曲率……

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2020-7-30 18:38
椭圆的曲率圆:
\[ \left(x-\frac{a^{2}-b^{2}}{a}\left(\cos t\right)^{3}\right)^{2}+\left(y-\frac{a^{2}-b^{2}}{b}\left(\sin t\right)^{3}\right)^{2}=\frac{\left(\left(a\sin t\right)^{2}+\left(b\cos t\right)^{2}\right)^{3}}{a^{2}b^{2}} \]

Comment

$\left(y-\frac{a^{2}-b^{2}}{b}\left(\sin t\right)^{3}\right)$应为$\left(y\color{red}+\frac{a^{2}-b^{2}}{b}\left(\sin t\right)^{3}\right)$  Posted 2024-3-22 03:08

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2020-7-30 19:09
回复 4# 青青子衿

帮我补全引理的双曲线抛物线及证明呗

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-7-31 01:26
86鱼不鸟我,我先写下引理椭圆的证明吧……
QQ截图20200731012518.png
如上图,设 `P` 处的切线交准线于 `Q`,熟知 `PF\perp QF`,所以
\[\cot\alpha=\frac{PF}{QF}=\frac{PH}{FG}=\frac{PH}{a^2/c-c}=\frac c{b^2}PH,\]所以如果令 `P(a\cos t,b\sin t)`,则
\[\cot\alpha=\frac cb\sin t\implies\frac1{\sin\alpha}=\sqrt{1+\frac{c^2}{b^2}\sin^2t}.\]
另一方面,由参数方程的曲率公式
\[K=\frac{|\varphi'(t)\omega''(t)-\omega'(t)\varphi''(t)|}{\bigl(\varphi'(t)^2+\omega'(t)^2\bigr)^{3/2}},\]易得曲率半径为
\[\rho=\frac1K=\frac{(a^2\sin^2t+b^2\cos^2t)^{3/2}}{ab}=\frac{(c^2\sin^2t+b^2)^{3/2}}{ab},\]把上面的代入,就是
\[\rho=\frac{b^2}{a\sin^3\alpha}.\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-7-31 01:54
回复 6# kuing

双曲线的话,开头应该一样,中间是不是将 sin、cos 改成 sinh、cosh 来玩就行了?可是双曲函数我不熟……

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-1-15 14:01
回复 1# hbghlyj
后面那个共点推论是布列安桑定理的推论.六边形退化为三角形.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-5-31 18:48
这帖可得,对中心为O的椭圆,存在圆O的内接三角形△ABC,使△ABC的三边恒与这个椭圆相切.
由彭赛列闭合定理,存在圆O的无穷个内接三角形△ABC,使△ABC的三边恒与这个椭圆相切,且A可取圆O上任何一点,且当A在圆O上运动时,B和C是连续运动的.
设△ABC的三边与椭圆相切于P,Q,R.
设A,B,C在圆上运动的速度为$v_A,v_B,v_C$.
则$\frac{v_A}{v_B}=\frac{AR}{RB}$,于是$1=\prod\frac{v_A}{v_B}=\prod\frac{AR}{RB}$,即为1#的那个推论.
圆内接三角形2.gif

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-5-31 22:45
回复 9# hbghlyj

又让我想起了彭赛列……

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-6-1 12:12
Last edited by hbghlyj 2024-3-21 19:09Liouville's Conic Theorem
The lengths of the tangents from a point P to a conic C are proportional to the cube roots of the radii of curvature of C at the corresponding points of contact.

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2023-8-12 18:37
hbghlyj 发表于 2021-6-1 12:12
刘维尔锥线定理
和仿射曲率是不是也有关系?
Problem 1.29 Given a curve y = f (x), prove that ds = (f'')^(1/3)dx and
k = 5/9*(f'')^(-8/3)*(f''')^2 − 1/3*(f'')^(-5/3)*f''''.
Victor V. Prasolov - Differential Geometry P29

Mobile version|Discuz Math Forum

2025-5-31 10:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit