Forgot password?
 Create new account
View 130|Reply 1

[几何] 三余弦定理的替代解法

[Copy link]

1

Threads

0

Posts

5

Credits

Credits
5

Show all posts

1727 Posted at 2024-8-19 11:27:00 |Read mode
直角三角形ABC,C=90度,AC=5,BC=4。点D是斜边AB上一动点,将三角形BCD沿CD向上翻折,得到三棱锥B‘-ACD,满足平面B'DC垂直于平面ACD。求翻折后AB'的最小值?

这道题除了三余弦定理的结论应用,是否有其他的解决方法?

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2024-8-19 14:41:54
PixPin_2024-08-19_14-43-42.png
设 `\angle ACD=x`,则 `\angle B'CD=90\du-x`,作 `B'H\perp CD` 于 `H`,则 `CH=4\sin x`,由勾股定理及余弦定理有
\begin{align*}
AB'&=\sqrt{B'H^2+HA^2}\\
&=\sqrt{B'H^2+CH^2+CA^2-2CH\cdot CA\cos x}\\
&=\sqrt{B'C^2+CA^2-2CH\cdot CA\cos x}\\
&=\sqrt{16+25-2\cdot4\sin x\cdot5\cos x}\\
&=\sqrt{41-20\sin2x}\\
&\geqslant\sqrt{21}.
\end{align*}

手机版Mobile version|Leisure Math Forum

2025-4-21 14:28 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list