Forgot password?
 Register account
View 304|Reply 1

[几何] 一道几何小题

[Copy link]

6

Threads

2

Posts

43

Credits

Credits
43

Show all posts

flvbin Posted 2025-3-8 17:14 |Read mode
Last edited by hbghlyj 2025-4-20 13:19

已知:在四边形 $C E Q D B A$ 中,$B D=D C$,$M N$ 为牛顿线,作 $C P \px M N$ 交 $A D$ 于 $P$。
求证:$S_{\triangle P B D}=S_{\triangle P E A}$

4

Threads

139

Posts

2198

Credits

Credits
2198

Show all posts

Aluminiumor Posted 2025-4-22 20:44
Last edited by Aluminiumor 2025-4-22 21:16剥蒜:

不妨设 $A(a,b),B(-1,0),C(1,0),D(0,0),\abs{CE}=k\abs{CA}$
则 $E(ka+1-k,kb)$
所以 $$M\left(\frac{a-1}{2},\frac{b}{2}\right),N\left(\frac{ka+1-k}{2},\frac{kb}{2}\right)$$
$$\Longrightarrow k_{MN}=\frac{(k-1)b}{(k-1)a+2-k}$$
$CP:y=k_{MN}(x-1),AD:y=\dfrac{b}{a}x$
联立解得 $$P\left(\frac{k-1}{k-2}a,\frac{k-1}{k-2}b\right)$$

$$\mathbf{AE}=\left((k-1)(a-1),(k-1)b\right),\mathbf{AP}=\left(\frac{a}{k-2},\frac{b}{k-2}\right)$$
所以 $$2S_{\triangle PEA}=\abs{\mathbf{AE}\times\mathbf{AP}}=\abs{\frac{k-1}{k-2}b}$$
又显然 $$2S_{\triangle P B D}=\abs{y_{P}}=\abs{\frac{k-1}{k-2}b}$$
故得证.
Wir müssen wissen, wir werden wissen.

Mobile version|Discuz Math Forum

2025-6-5 01:27 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit