|
Last edited by Aluminiumor 2025-4-22 21:16剥蒜:
不妨设 $A(a,b),B(-1,0),C(1,0),D(0,0),\abs{CE}=k\abs{CA}$
则 $E(ka+1-k,kb)$
所以 $$M\left(\frac{a-1}{2},\frac{b}{2}\right),N\left(\frac{ka+1-k}{2},\frac{kb}{2}\right)$$
$$\Longrightarrow k_{MN}=\frac{(k-1)b}{(k-1)a+2-k}$$
$CP:y=k_{MN}(x-1),AD:y=\dfrac{b}{a}x$
联立解得 $$P\left(\frac{k-1}{k-2}a,\frac{k-1}{k-2}b\right)$$
故
$$\mathbf{AE}=\left((k-1)(a-1),(k-1)b\right),\mathbf{AP}=\left(\frac{a}{k-2},\frac{b}{k-2}\right)$$
所以 $$2S_{\triangle PEA}=\abs{\mathbf{AE}\times\mathbf{AP}}=\abs{\frac{k-1}{k-2}b}$$
又显然 $$2S_{\triangle P B D}=\abs{y_{P}}=\abs{\frac{k-1}{k-2}b}$$
故得证. |
|