Forgot password
 Register account
View 237|Reply 2

[几何] 圆内接两个三角形

[Copy link]

3208

Threads

7835

Posts

52

Reputation

Show all posts

hbghlyj posted 2025-4-12 11:24 |Read mode
圆内接两个三角形 ABC 和 $A'B'C'$。设 $M=AC\cap A'C'$,$N=AB\cap A'B'$。设 $a_{b'}=BC\cap A'C'$,$a'_c=B'C'\cap AB$,$a_{c'}=BC\cap A'B'$,$a'_b=B'C'\cap AC$。$P= a_{b'}a'_c\cap a_{c'}a'_b$。证明 M、N、P 共线。

3208

Threads

7835

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2025-4-13 12:54
根据帕斯卡定理:设 P′=BC′∩B′C,则 M、N、P′ 共线。但这个问题是M、N、P共线

10

Threads

13

Posts

3

Reputation

Show all posts

星奔川骛 posted 2025-4-13 13:24
根据Pascal定理:设 P′=BC′∩B′C,则 M、N、P′ 共线
设T=Ba'b∩B'ab',根据Pappus定理,则T,P,N共线;T,M,P'共线
所以T,M,N,P,P'五点共线,即证

Rate

Number of participants 1威望 +1 Collapse Reason
zhiwen + 1 精彩!

View Rating Log

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-19 21:24 GMT+8

Powered by Discuz!

Processed in 0.014947 seconds, 32 queries