Forgot password
 Register account
View 33|Reply 5

[函数] 三角求值的问题

[Copy link]

418

Threads

909

Posts

0

Reputation

Show all posts

lemondian posted 2025-6-30 18:24 |Read mode
这个三角式$\cos^n\dfrac{\pi}{9}+\cos^n\dfrac{5\pi}{9}+\cos^n\dfrac{7\pi}{9}$的结果有没有具体的表达式?

Comment

没有  posted 2025-6-30 20:21

678

Threads

110K

Posts

213

Reputation

Show all posts

kuing posted 2025-6-30 22:53
你写的式子本身不就是一个具体的表达式么?

如果是想化简它,那就算了。

如果只是想计算某个 n 的值,那就用递推好了,设那式子为 `a_n`,算出那三个三角函数的初等对称多项式的值后,然后由牛顿公式即得
\[a_n=\frac34a_{n-2}+\frac18a_{n-3}.\]

3175

Threads

7936

Posts

48

Reputation

Show all posts

hbghlyj posted 2025-7-1 09:44
三次多项式
$$
P(z)=8z^3-6z-1
$$
的三个实根为$\alpha=\cos\frac\pi9,\beta=\cos\frac{5\pi}9,\gamma=\cos\frac{7\pi}9$,于是对任意正整数 $n$,有
$$
\alpha^n+\beta^n+\gamma^n
=\href{//reference.wolfram.com/language/ref/RootSum.html}{\rm RootSum}\bigl[8z^3-6z-1,z^n\bigr]
$$
借助留数公式写为
$$
\alpha^n+\beta^n+\gamma^n
=\frac1{2\pi i}\oint_{|z|=R}
\frac{z^nP'(z)}{P(z)}dz
=\frac1{2\pi i}\oint_{|z|=R}
\frac{z^n(24z^2-6)}{8z^3-6z-1}dz
$$
其中 $R>\max\{|\alpha|,|\beta|,|\gamma|\}$。

圆周$|z|=R$参数化$z=Re^{i\theta}, \theta\in[0,2\pi]$
$$\frac1{2\pi i}\oint_{|z|=R}\frac{z^n(24z^2-6)}{8z^3-6z-1}dz
=\frac1{2\pi}\int_{0}^{2\pi}
\frac{R^{n+1}e^{i(n+1)\theta}(24R^2e^{2i\theta}-6)}
{8R^3e^{3i\theta}-6Re^{i\theta}-1}d\theta
$$
取最常用的 $R=1$ 为
$$
\frac1{2\pi}\int_{0}^{2\pi}
\frac{e^{i(n+1)\theta}(24e^{2i\theta}-6)}{8e^{3i\theta}-6e^{i\theta}-1}d\theta
$$

Comment

这个真心不懂  posted 2025-7-1 09:01
人家都巴不得把积分式变成确切的三角值,你这倒好,越化越复杂了  posted 2025-7-1 12:13

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-1 17:57 GMT+8

Powered by Discuz!

Processed in 0.015248 seconds, 36 queries