|
三次多项式
$$
P(z)=8z^3-6z-1
$$
的三个实根为$\alpha=\cos\frac\pi9,\beta=\cos\frac{5\pi}9,\gamma=\cos\frac{7\pi}9$,于是对任意正整数 $n$,有
$$
\alpha^n+\beta^n+\gamma^n
=\href{//reference.wolfram.com/language/ref/RootSum.html}{\rm RootSum}\bigl[8z^3-6z-1,z^n\bigr]
$$
借助留数公式写为
$$
\alpha^n+\beta^n+\gamma^n
=\frac1{2\pi i}\oint_{|z|=R}
\frac{z^nP'(z)}{P(z)}dz
=\frac1{2\pi i}\oint_{|z|=R}
\frac{z^n(24z^2-6)}{8z^3-6z-1}dz
$$
其中 $R>\max\{|\alpha|,|\beta|,|\gamma|\}$。
圆周$|z|=R$参数化$z=Re^{i\theta}, \theta\in[0,2\pi]$
$$\frac1{2\pi i}\oint_{|z|=R}\frac{z^n(24z^2-6)}{8z^3-6z-1}dz
=\frac1{2\pi}\int_{0}^{2\pi}
\frac{R^{n+1}e^{i(n+1)\theta}(24R^2e^{2i\theta}-6)}
{8R^3e^{3i\theta}-6Re^{i\theta}-1}d\theta
$$
取最常用的 $R=1$ 为
$$
\frac1{2\pi}\int_{0}^{2\pi}
\frac{e^{i(n+1)\theta}(24e^{2i\theta}-6)}{8e^{3i\theta}-6e^{i\theta}-1}d\theta
$$ |
|