Forgot password?
 Create new account
View 2254|Reply 12

[函数] 2014华约

[Copy link]

22

Threads

69

Posts

525

Credits

Credits
525

Show all posts

wzxsjz Posted at 2014-7-22 09:43:10 |Read mode
已知$n\in N^{*},x\leqslant n,$求证:$n-n(1-\frac{x}{n})^{n}e^{x}\leqslant x^{2}$

25

Threads

1021

Posts

110K

Credits

Credits
12702

Show all posts

战巡 Posted at 2014-7-22 10:31:40
回复 1# wzxsjz

\[n-n(1-\frac{x}{n})^ne^x\le n[1-(1-\frac{x}{n})^n(1+\frac{x}{n})^n]\]
\[=n[1-(1-\frac{x^2}{n^2})^n]\le n[1-(1-\frac{x^2}{n})]=x^2\]

两个不等式的取等条件都是$x=0$,仅当$x=0$时等号成立

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-7-22 10:50:23
2楼证得漂亮~~~

7

Threads

128

Posts

879

Credits

Credits
879

Show all posts

第一章 Posted at 2014-7-22 11:33:16
不知道命题人的答案是什么……

2

Threads

465

Posts

6357

Credits

Credits
6357
QQ

Show all posts

爪机专用 Posted at 2014-7-22 11:49:53
回复 2# 战巡

之前在群里好像就看你这样证过一次
I am majia of kuing

700

Threads

110K

Posts

910K

Credits

Credits
94222
QQ

Show all posts

kuing Posted at 2014-7-22 14:26:42
Last edited by hbghlyj at 2 hr ago回复 5# 爪机专用

翻到了
已知$n\inN^{*},x\leqslant n,$求证:$n-n(1-\frac{x}{n})^{n}e^{x}\leqslant x^{2}$
战巡2014-3-1
\[
n - n \left(1 - \frac{x}{n}\right)^n e^x \leq n - n \left(1 - \frac{x}{n}\right)^n \left(1 + \frac{x}{n}\right)^n = n - n \left(1 - \frac{x^2}{n^2}\right)^n
\]
再由伯努利不等式得
\[
n - n \left(1 - \frac{x^2}{n^2}\right)^n \leq n - n \left(1 - \frac{x^2}{n}\right) = x^2
\]

22

Threads

69

Posts

525

Credits

Credits
525

Show all posts

 Author| wzxsjz Posted at 2014-7-22 17:03:41
Last edited by wzxsjz at 2014-7-22 17:22:00哇德福呢!
wonderful!
exellent!

22

Threads

69

Posts

525

Credits

Credits
525

Show all posts

 Author| wzxsjz Posted at 2014-7-22 18:40:30
Last edited by wzxsjz at 2014-7-26 00:05:00$ e^{x}\geqslant(1+\frac{x}{n})^{n}    (x\in R) $,
这个怎么证明?


这个不等式不成立,$x=-4,n=2 $,就可以否了,2#好像用了它

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-7-22 23:21:08
回复 8# wzxsjz

设$t=\frac{x}{n}$,再导数

22

Threads

69

Posts

525

Credits

Credits
525

Show all posts

 Author| wzxsjz Posted at 2014-7-24 22:52:48
回复 9# realnumber
谢谢您

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-7-25 10:25:14

700

Threads

110K

Posts

910K

Credits

Credits
94222
QQ

Show all posts

kuing Posted at 2014-8-1 16:13:25
回复 8# wzxsjz

要不是翻翻旧贴都不知道你这贴新加了内容……应该顶起来说哇不然别人注意不到

22

Threads

69

Posts

525

Credits

Credits
525

Show all posts

 Author| wzxsjz Posted at 2014-8-1 18:01:47
回复 12# kuing

谢谢!我不老练。

手机版Mobile version|Leisure Math Forum

2025-4-23 05:58 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list