Forgot password?
 Register account
View 2383|Reply 12

[函数] 2014华约

[Copy link]

21

Threads

67

Posts

510

Credits

Credits
510

Show all posts

wzxsjz Posted 2014-7-22 09:43 |Read mode
已知$n\in N^{*},x\leqslant n,$求证:$n-n(1-\frac{x}{n})^{n}e^{x}\leqslant x^{2}$

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2014-7-22 10:31
回复 1# wzxsjz

\[n-n(1-\frac{x}{n})^ne^x\le n[1-(1-\frac{x}{n})^n(1+\frac{x}{n})^n]\]
\[=n[1-(1-\frac{x^2}{n^2})^n]\le n[1-(1-\frac{x^2}{n})]=x^2\]

两个不等式的取等条件都是$x=0$,仅当$x=0$时等号成立

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

realnumber Posted 2014-7-22 10:50
2楼证得漂亮~~~

7

Threads

127

Posts

874

Credits

Credits
874

Show all posts

第一章 Posted 2014-7-22 11:33
不知道命题人的答案是什么……

0

Threads

412

Posts

6093

Credits

Credits
6093
QQ

Show all posts

爪机专用 Posted 2014-7-22 11:49
回复 2# 战巡

之前在群里好像就看你这样证过一次
I am majia of kuing

682

Threads

110K

Posts

910K

Credits

Credits
90968
QQ

Show all posts

kuing Posted 2014-7-22 14:26
Last edited by hbghlyj 2025-4-23 03:33回复 5# 爪机专用

翻到了
已知$n\inN^{*},x\leqslant n,$求证:$n-n(1-\frac{x}{n})^{n}e^{x}\leqslant x^{2}$
战巡2014-3-1
\[
n - n \left(1 - \frac{x}{n}\right)^n e^x \leq n - n \left(1 - \frac{x}{n}\right)^n \left(1 + \frac{x}{n}\right)^n = n - n \left(1 - \frac{x^2}{n^2}\right)^n
\]
再由伯努利不等式得
\[
n - n \left(1 - \frac{x^2}{n^2}\right)^n \leq n - n \left(1 - \frac{x^2}{n}\right) = x^2
\]

21

Threads

67

Posts

510

Credits

Credits
510

Show all posts

 Author| wzxsjz Posted 2014-7-22 17:03
Last edited by wzxsjz 2014-7-22 17:22哇德福呢!
wonderful!
exellent!

21

Threads

67

Posts

510

Credits

Credits
510

Show all posts

 Author| wzxsjz Posted 2014-7-22 18:40
Last edited by wzxsjz 2014-7-26 00:05$ e^{x}\geqslant(1+\frac{x}{n})^{n}    (x\in R) $,
这个怎么证明?


这个不等式不成立,$x=-4,n=2 $,就可以否了,2#好像用了它

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

realnumber Posted 2014-7-22 23:21
回复 8# wzxsjz

设$t=\frac{x}{n}$,再导数

21

Threads

67

Posts

510

Credits

Credits
510

Show all posts

 Author| wzxsjz Posted 2014-7-24 22:52
回复 9# realnumber
谢谢您

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2014-7-25 10:25

682

Threads

110K

Posts

910K

Credits

Credits
90968
QQ

Show all posts

kuing Posted 2014-8-1 16:13
回复 8# wzxsjz

要不是翻翻旧贴都不知道你这贴新加了内容……应该顶起来说哇不然别人注意不到

21

Threads

67

Posts

510

Credits

Credits
510

Show all posts

 Author| wzxsjz Posted 2014-8-1 18:01
回复 12# kuing

谢谢!我不老练。

Mobile version|Discuz Math Forum

2025-6-7 07:51 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit