已知$n\inN^{*},x\leqslant n,$求证:$n-n(1-\frac{x}{n})^{n}e^{x}\leqslant x^{2}$
战巡2014-3-1
\[
n - n \left(1 - \frac{x}{n}\right)^n e^x \leq n - n \left(1 - \frac{x}{n}\right)^n \left(1 + \frac{x}{n}\right)^n = n - n \left(1 - \frac{x^2}{n^2}\right)^n
\]
再由伯努利不等式得
\[
n - n \left(1 - \frac{x^2}{n^2}\right)^n \leq n - n \left(1 - \frac{x^2}{n}\right) = x^2
\]