Forgot password?
 Register account
View 2950|Reply 10

[不等式] 一个之前还没完全解决的不等式,开个新帖继续求秒...

[Copy link]

4

Threads

57

Posts

388

Credits

Credits
388

Show all posts

零定义 Posted 2013-9-25 15:20 |Read mode
原帖链接:forum.php?mod=viewthread&tid=121&extra=page=4

求证:$\forall x>1$,都有$\dfrac{2^x-1}{3^x-2^x}\le 3(\dfrac{1}{x-1}-\dfrac{1}{x})$.

求各位大神秒!!!
睡自己的觉,让别人说去...

4

Threads

57

Posts

388

Credits

Credits
388

Show all posts

 Author| 零定义 Posted 2013-9-26 21:28
来人呐,我的贴要沉了...
睡自己的觉,让别人说去...

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2013-9-26 22:05
沉不了沉不了,外面的基本解决后,就都会来了

偶是打酱油的

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-9-26 22:09
如果把$x$改成自然数$n$,在$n>3$的时候就是一个很弱的不等式,用二项式定理就可以证明。

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

realnumber Posted 2013-9-28 14:26
没秒~~~~,好难啊,我先丢砖头,
1.伯努利不等式$(1+0.5)^x>1+0.5x,x>1$
2.由模仿其导数证法,二项展开得到猜测可得$(1+0.5)^x \ge 1+0.5x+0.125x(x-1),x\ge2$
3.进而得$(1+0.5)^x \ge 1+0.5x+0.125x(x-1)+\frac{x(x-1)(x-2)}{48},x\ge3$
\[\frac{1-\frac{1}{2^x}}{1.5^x-1}\le\frac{1}{1+0.5x-1}\le \frac{3}{x(x-1)}\]
解得$x\le 2.5$
当$x\ge 2$时,
\[\frac{1-\frac{1}{2^x}}{1.5^x-1}\le\frac{1}{1+0.5x+0.125x(x-1)-1}\le \frac{3}{x(x-1)}\]
解得$x\le \frac{17}{5}$
当$x\ge3$时,
\[\frac{1-\frac{1}{2^x}}{1.5^x-1}\le\frac{1}{1+0.5x+0.125x(x-1)+\frac{x(x-1)(x-2)}{48}-1}\le \frac{3}{x(x-1)}\]
化简得$0\le x^2-13x+36$,解得$x\le4,or,x\ge9$
----汗$4<x<9$还是没解决,解决了也已经很难看了,不解了.

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-9-28 23:34
回复 5# realnumber
还是赞一个!

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2013-10-4 13:28
多谢realnumber老师,不过有点高深,我没往下看的勇气…
别沉了,冒个泡,继续求秒…
除了不懂,就是装懂

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

realnumber Posted 2013-10-5 18:32
写上证明记$f(t)=(1+t)^x-1-xt-0.5x(x-1)t^2,x>2,t\ge0$
则$f(0)=0,f'(t)=x(1+t)^{x-1}-x-x(x-1)t,f'(0)=0$
$f''(t)=x(x-1)(1+t)^{x-2}-x(x-1),f''(0)=0$
$f'''(t)=x(x-1)(x-2)(1+t)^{x-3}>0$所以依次可得$f''(t)>0,f'(t)>0,f(t)>0$,另一个类似.

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2013-10-5 21:27
看题目就想匿了

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-5 21:56
看题目就想匿了
Tesla35 发表于 2013-10-5 21:27
,本来原帖是$x\in N_+$吧,楼主偏偏要把它改为$x>1$,

4

Threads

57

Posts

388

Credits

Credits
388

Show all posts

 Author| 零定义 Posted 2013-11-7 16:10
顶上,好让西神帮忙秒掉!!!

Mobile version|Discuz Math Forum

2025-6-5 19:42 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit